亚洲国产aⅴ综合网一区_一本大道香蕉大道在日韩_黄片无码自慰在线看_国产精品视频九九_97超碰免费观看黄色片_免费一级特黄特色大片_欧式一级高清电影在线观看_国产三级在线网站_国产成人精品日本欧美动漫_免费视频播放一区二区无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

亚洲综合图片色婷婷另类小说| 国产精品成人免费公开视频| 欧美夜夜高潮夜夜爽va| 中文字幕综合一区二区| 亚洲aⅴ毛片一区二区三区| 无码少妇一级AV片在线观看| 日韩国产另类精品视频| 天啪天啪综合在线视频| 又粗又长无码av| 99久久99久久精品国产片果冰| 久久久精品香蕉| 日本高清在线www3344| 中文字幕日本熟女视频高清| 妻子初次接受三人行小说 | 最近免费2019中文字幕大全| 亚洲一级无码黄片| 你懂的国产电影在线观看 | 亚洲国产精品ⅴ?在线播放| 美女被一区二区三区美女视频免费| 日本中文字幕av每天更新| 日韩性freexxxx在线观看| 女人爽到高潮免费视频国产| 国产欧美在线电影| 久久久久国产成人免费观看| 亚洲精品久久久久电影无码AV| 99久久999久久久综合精品涩| 久久一本精品久久精无码精品a∨| 大地资源在线播放观看动画| 亚洲精品99在线| 国产亚洲亚洲高清图 | 18禁成年无码免费网站| 亚洲av永久精品二区在线| 影院中文字幕第一页| 天天免费看片| 三级欧美日韩在线| 国产激情一区不卡一区在线| 欧美不卡无聊在线| 一区二区三区精品高清视频免费在线播放| 国产精品欧美久久久久天天视| 久久国产午夜av| 国日韩产超清无码片内射| 欧美婬香色综合欧美| 久久99热东京热亲亲热| 亚洲男人的无码天堂2017| 亚洲男人的无码天堂2017| 国模小黎大尺度视频流出| 深夜?级毛片视频免费| 午夜在线播放免费人成影视| 国产色播老熟妇肥大Ⅹxxwww| 国产成人精品影院狼色在线| www97思思在线视频| 在线一级黄片| 精品人妻系列无码久久久久久| 国语清纯对白在线播放| 三级片日本免费亚洲| 青草视频网站在线观看| 成·人免费无码视频在线观看| 欧美性在线视频| 黄色免费在线短视频| 午夜视频国产在线直播| 亚洲不卡在线视频| 超级免费毛片视频了| 无套内射一区二区| 久久这里知有精品99re66| 国产一区免费在线| 亚洲成人专区在线观看| 国产老女人精品免费视频| 尤物yw193国产在线精品| 日韩欧美午夜福利视频| 浪货把腿张开嗯让你爽| 国产AV综合网站| 久久国产精选AV免费| 日韩美女在线视频网站免费观看| 日韩色成人av电影| 午夜理论片免费新闻女主播| 国产情侣av高清片| 校花被扒衣吸乳漫画免费| 精品伊人久久久大香线蕉欧美| 大色综合色综合网站| 欧洲成人一区网站| 在线观看网址你懂的| 饥饿91富婆少妇推油按摩| 精品少妇大屁股白浆无码| 在线观看麻豆精品| 又黄又粗又大又硬的免费视频 | 亚洲日本欧美一区二区三区| 欧美女性爱视频免费看| 國內精品國產三級國產AV| 国产亚洲亚洲高清图 | 日韩国产另类精品视频| 国产一级婬片AAAAAA片车 | 国产人成午夜免电影观看| 免费精品国偷自产在线洗澡| 久99久热只有精品国产| 日本xxxx18视频在线观看| 日本不无在线一区二区三区视频| 2020狠狠狠狠久久免費觀看| 中文字幕无码免费2020| 蜜桃视频app色版永久免费 | 欧洲国产又粗又黄又爽的视频| 毛片AA级毛片区| 国产成人欧美日本在线观看| 欧美亚洲国产精品久久| 大香伊蕉在人线国产2019| 清纯制服无遮无挡试看120秒 | 亚洲综合尤物在线| 免费午夜av电影| 黄色在线观看网站中文字幕综合久久久久 | 爱丫爱丫影院电视剧在线观看 | 国产91丝袜美腿视频在线观看| 小草社区在线观看播放| 中文字幕久久一区二区| 超碰AV男人天堂| 国产片成人在线观看| 国产成人毛片精品不在线| 国产熟女一区二区| 桃花阁成人网在线观看| 亚洲中文字幕久久精品va| aa在线观看免费视频高清| 一区二区三区午夜免费| 国产精品看片在线观看AV| 精品人妻久久久久一区二区高清观看视频| 亚洲 中文字幕 日产| 正在播放无套粉嫩久久久久久| 呦呦未满 在线观看一区| 高潮毛片無遮擋高清免費視頻| 在线观看后入内射视频WWW | 视频一区二区人妻| 亚洲精彩视频在线播放| 黄色国产网站在线观看视频| 特级aa毛片免费视频| 久99久热只有精品国产 | 爆出白浆超碰人人人人| 国产99对白在线播放| 色婷婷五月人人看电影| 性饥渴少妇列运动视频| 亚洲成人午夜电影免费观看| 久久一本精品久久精无码精品a∨| 深夜精品福利日韩| 国产尤物精品一区二区三区| 国产女人体一区二区三区国人馆| 九九亚洲精品视品| 在线电影三级乱码高清在线观看| 日韩精品在线观看一二三区| 久久国产精选AV免费| 精品99国产视频| 成人免费高清完整版在线观看| 古装一级无遮挡a毛片免费观看| 国产福利视频一区二区在线观看| 国产理论三级视频| 69天堂国产亚洲精品一二区| 国产日产欧美欧韩在线| 色黄啪啪18周岁以下禁止观看| 黄无码片在线免费观看| 精品人妻av免费看| 福利网红精品免费高清| 欧美深夜福利视频| 久久精品在线毛片观看| 久久综合网丁香五月| 欧洲国产又粗又黄又爽的视频| 久久久久久久一区二区视频| 最新1024狼友在线| 天天综合天天爱天天做天天爽| free性欧美hree性欧美| 91华人熟女免费观看| 最近更新中文字幕第6页色秀视频每日更新 | 91精品久久久午夜无码鲁丝片福利视频| 国产精品久久国产精品99 gif| 成人精品一区二区三区视频播放| 欧美激情精品久久波多野结衣一区| 蜜桃成人一区二区三区| 国产美女在线观看精品| 最美情侣视频的免费观看方法| 少妇口述3p喷水经历| 中文字幕97av在线观看| 性开放国产精油按摩Av片| 亚洲无线天堂无码| 深夜福利电影免费国产| 裸体老太老妇人SE×| 国产原创无码丅v首播| 中文字幕第一页高清不卡| 人妻少妇波多野结衣| 国产成人精品影院狼色在线| 大色综合色综合网站| 国产va精品免费观看剧情介绍| 午夜神器下载污污软件| 欧美丰满性久久久久久久| 日韩精品国产二区三区久久看 | 东莞国产偷倩在线播放| 天堂va欧美va亚洲v| 91最新国内在线播放| 综合日本久久久久| 97久久精品久久久水蜜桃| 天天躁日日躁狠狠躁综合| 无码国产精品一区二区免费3p| 亚洲无码免费观看| 亚洲阿V天堂在线观看2020 | 岛国高清无码在线| 亚洲福利在线观看一区二区 | 国产一区二区射精| 免费观看在线a级毛片不卡| 国产原创无码丅v首播| 最新中文字幕av无码专区1| 麻豆国产亚洲精品视频最新| 97影院手机在线| 性欧美高清come| h片在线观看网站| 18欧美亚洲精品| 亚洲国产婷婷在线观看| 精品一区二区三区免费| 精品一区二区三区Av麻| 东北露脸46熟妇ⅩⅩXX| 国产换妻视频在线高清| 性欧美高清come| 日韩不卡av电影| 另类乱黄乱码乱色a级天堂在播放| 1024手机看片基地| 国产成人综合AV网址| 成人大片毛片视频| 久久久久久久久精品免费 | 亚洲A无码国产精品久久网| 精品少妇大屁股白浆无码| 国产日韩精品黄色av| 在线观看国内精品视频| 中文字幕精品亚洲字幕日韩| 国产专区在线影视日韩精品| 国产91精品秘入福利姬| 嫩草影院在线看| 宝贝对着摄像头自己做忘羡| 惠民福利国产精品v欧美精品∨日韩| 麻豆系列a区二a区| 年轻的后妈+在线观看| 18+在线观看网站| 嫩草影院在线看| 中文字幕亚洲母乳| 久久精品亚洲一级片| 日本欧美中文| 日韩欧美国产v一区二区三区| 欧美日韩精品久久久久久中文字幕| 妻子初次接受三人行小说| 精品99国产视频| 泡芙视频免费观看网| 91短视频在线观看直播| 国产一级性爱精品| 一区二区三区熟女少妇视频.| 欧美在线不卡激情二区| 欧美亚洲免费电影| 一区二区三区松下纱荣子在线观看| 真人做受120分钟视频| 国产乱肥老妇精品一区二区| japan丰满妇HD肉感| 强行破瓜稚嫩粗暴顶弄哭喊| 日韩欧美在线xxx| 国产成人精品免费一区| 四川少妇山上打野战| 天天看片永久免费AV下载app| 榴莲视频免费污| 手机在线观看视频| 国产电影一卡二卡三卡四卡| 久久性欧美精品| 屁屁黄色影院| 亚洲免费高清大片| 国产亚洲三区四区| 国产成人久久精品一区二区三区欧美 | 国产三级片免费看一区二区三区| 大热色香蕉久久| 韩国视频一区二区在线观看| 夜片视频在线观看视频| 国产欧美ⅴa欧美ⅴa在观看| 一级aaa黄毛片啪啪| 国产精品欧美亚洲大片在线观看| 一级毛片免费看傲雪网| 国产69精品久久久久久妇女迅雷 | 国产午夜福利在线观看视频| 国产一级簧片在线看视频| 2023日本精品免费在线视频| baoyu在线观看视频播放视频| 最新亚洲精品国产理论电影| japan丰满妇HD肉感| 18+在线观看网站| 国产一级特黄无码大片| (愛妃)久久久久亚洲AV无码专区喷水 | 日韩精品极品在线播放| 久久国产精品乱子乱精品 | 国产美女在线观看精品| 国产精品白丝喷水娇喘视频site:| 好大好硬好深好爽gif图 | 久久精品国产亚洲av无| 男女直接做无遮掩视频在线观看| 欧美性色黄大片人与善| 艳妇臂荡乳欲伦交换HVR| 无码日本精品一区二区片| 最新91午夜福利在线| 好姑娘3完整版在线观看全集| 最好看的2018中文2019| 最新中文字幕av无码专区1| 国产精品嫩草影院?V| a级吸乳电影在线观看| 国产强奷在线播放免费| 日韩Av无码新作| 久久久久久中文字幕无码| 国产日韩污视频在线观看 | ww久久免费网国产AⅤ| 无码精品人妻免费| 热门成人影片av一区二区| 国产专区一区在线无码| 欧美一级日韩一级| 宝贝对着摄像头自己做忘羡| 亚洲欧美综合人成在线| 污视频免费在线观看| 国产乱肥老妇精品一区二区| 国产AV综合AV一区二区三区| ゆきえ52美熟女に大量中出し| 91超碰一区二区三区| 夜夜骚成人网址| 国产中文字幕二区2021| 欧美国产精品一区久久| 亚洲国产无码精品在线观看吃玉脚 | 日本黄网站动漫视频免费| 东京热中文字幕A∨无码 | 在线播放av亚洲五月| 无码?v二区三区久久精品| 人妻无码第一区二区三区网址| 污污网站下载| 在线一区二区美欧视频| 亚洲 中文字幕 精品| 亚洲欧美日本中国在线观看 | 福利一亚洲精品一二区| 精品束缚无码丰满人妻| 高清一区日韩亚洲欧美| 直接看的成人无码视频网站| 又爽又黄无遮挡激情视频| 日韩精品国产网红| 亚洲午夜福利无码久久久久| 精品国产成人| 久久99热东京热亲亲热| 日韩欧美一级内射| 日韩综合一区三级久久久| 尤物网站线精品视频| 久久婷婷五月麻豆国产| 国产精品一区二区三区免费看 | 乐乐的jianying日记阅读| 污视频免费在线观看| 了解最新久久亚洲精品国产精品婷婷| 亚洲日韩五月综合| 国产成免费视频在线观看| 欧美成人不卡手机视| 国产自愉自愉第三区| 性生交大片免费看a| 亚洲精品国产后入内射| 特级西西WWW.444人体聚色| 超级碰碰青草免费视频j| 国产国产18禁福利在线| 免费三级直播网站| 亚洲人成在线观看网站高清| 无码激情精品专区在线观看| 中文字幕熟妇久久久人妻| 国产丝袜精品第一页| AA片子吇中文字处女| 免费黄色网址国产麻豆三区| 无码乱码精品少妇一级内射 | 午夜精品影视| 国产欧美日韩一级二级三级| 欧美日韩国产第一区二区| 1024手机看片免费国产| 2018国产先天一级天天弄| 手机亚洲中文字幕乱码| 日本一区二区三区乱交电影| 公交车上忘穿内裤被c好爽| 欧美精品欧美专区| 黄色一级毛片在线看| 久久国产精品国产精品| www国产精品内射老熟女| 亚洲美腿丝袜无码专区| 野外露出国产在线视频| 欧美日韩国产的黄片| 少妇被下春药玩弄a片| 免费精品国偷自产在线洗澡| 亚洲va欧洲va日本ⅴa| 国产又大又黄又白又爽又刺激| 一区二区三区中文心得| 91亚洲成人影院| 欧洲福利电影大全高分电影免费观看在线 | 尤物亚洲A v无码精品色午夜| 手机小视频国产| 国产超aⅤ男人的天堂| 欧美乱大交XXXXX潮喷l头像| 亚洲日本精品99这里都是精品这里有精品 | 亚洲乱码国产乱码精网站| 色五月开心五月深爱婷婷| 亞洲福利視頻一區| 久久男人精品| ww久久免费网国产AⅤ| 欧美亚洲日韩 国内自拍| 少妇内射精品888视频| 国产一区二区久久婷婷| 你想要的我都给你→久久99亚洲高清观看| 又黄又大又黑又粗的视频网站| 国产精品无码不卡尤物在线| 亚洲一区二区 国产精品| 日韩不卡高清视频在线观看| 国产精品乱伦WWW| 无遮挡又黄又大又爽| 国产亚洲日韩丝袜91| 丝袜老师综合网亚洲| 最新国产亚洲中文字幕视频| 亚洲午夜成人手机电影在线| 日韩视频在线观看中文| 东京热中文字幕A∨无码 | 嫩草影院在线观看精品视频| 久久99热国产这里只有精品| 一本久道久久综合无毒五月| 99国产精品欧美久久久久久 | 超碰在线观看91| 免费国产免费色色国产| 女人自慰www免费看| 国产精品私密保养| 2024亚洲偷偷的一区二区| 嫩草影院在线看| 久久免费看少妇高潮?片| 日韩欧美国产资源| 91在线国自产视频主播| 日本免费高清欧美一区二区| 久久久97一区蜜臀国产日产精品 | 国产亚洲视频在线手机版下载| 久久国产欧美精品一区| 亚洲中文字幕久久精品va| 国产XXXX色视频在线| 欧美亚洲国产一二区| 9 1免费版 下载软件| 韩日免费小视频| 免费无码一级成年片| 亚洲欧洲日韩一区视频| 午夜老司机福利在线视频| 久久国产首页| 免费观看全黄做爰大片欲海记| japanese日本少妇丰满直播| 四虎影免看黄美女日逼AV | 日本三级电影天堂网| 国产亚洲视频在线手机版下载 | 古装无码高清magnet| 制服师生av在线| 精品黄色视频在线观看| 粗大的内捧猛烈进出爽免费视频| 久久久久五月婷婷| 国产欧美在线电影| 嫩草影院未满十八岁禁止入内| 国产视频A ⅴ在线播放| av无码精品久久久久精品免费| 嗯…啊?摸?湿?内裤?视频免费| 日本美国免费观看三级片| 曰的好深好爽免费视频网站| 亚洲国产精品综合久久网络亚洲国产成av人天堂无码 | 国产刺激高潮免费软件| 国产美女被躁喷水视频| 午夜影院免费观看| 暴力H精品推荐自拍| 国产熟女久久精品| 欧美一级理论片在线一| 国产成人欧美日本在线观看| 亚洲欧美国产精品粉嫩| 国产日韩污视频在线观看| 久久r精品免费美女被艹精| 国产欧美亚洲免费视频 | 亚洲aⅴ毛片一区二区三区| 最近免费2019中文字幕大全| 最近精品国产三级a∨在线| 小H短篇辣肉各种姿势动态图| 九一免费下载亚洲无码电影 | 18p精品无码在线观看| 免费在线看成人毛片| 亚洲日韩欧美在线不卡| 成·人免费无码视频在线观看| 国产精品波霸一区二区| 欧美午夜大片在线观看| 国产成免费视频在线观看| 曰本女人牲交大片| 亚洲无毛av在线| 精品日韩女仆在线观看网站免费视频| 日本免费在线观看| 思思热99re热在线视频| 榴莲视频免费污| 精品视频亚洲无码| 五月综合久久不能| 日本无码少妇内谢视频| 国产高潮一区二区三区无码| 99综合视频在线免费观看| 班花在教室轮流澡到高潮视频 | 国产JIZzJIzz视频全部免费| 欧美亚洲自拍日韩在线| 欧美性爱一我在线级| 日本三级电影天堂网| 亚洲字幕成人中文在线观看| av天堂国产对白| 天天看片永久免费AV下载app| 800αV色多多视频在线| 惠民福利亚洲av激情无码专区在线播放 | 九一免费下载亚洲无码电影| 亚洲中国久久精品无码| 欧美亚洲中文字幕麻豆| 韩国r级理论片在线观看| 色天使久久综合给合久久97色| 一区二区三区国产精品uuuu| 国产又黄又湿无遮挡在线观看| 看全黄大色黄大片视频| 国产黄片视频在线播放| 精品一区二区三区不卡蜜臂| 国产va精品免费观看剧情介绍| 91精品国产欧美一区二区三区| 美国一级毛片片aaa| 一级精品无码一级| 欧美午夜成本人视频| 久久综合网站久久综合网| 永久精品一区二区三区亚洲| 艳妇雪白细嫩的艳妇| 亚洲三级视频一区二区| 99久久老司机免费精品网站| 思思久久96热在精品国产精品| 日本一区二区三区电影在线| 天天日夜夜回| 国产+高清+无码+中文| 日本高清一区二区三区免费| 深夜?级毛片视频免费| 一区三区精品在线观看 | 中文字幕熟妇久久久人妻| 五月天激情四射网| 激情五月天亚洲| 狼人色国产在线视频麻豆| 手机看中文字幕一区无码| 性感人妻福利视频一区| 亚洲国产精品久久久久免费 | 一级毛片高清| 一级毛片不收费| 亚洲成年轻人天堂久久| 快播日韩新片| 日本高清一二三区| 麻豆国产亚洲精品视频最新| 日本精品久久久久中文字| а天堂网www最新版资源| 国产欧美亚洲免费视频 | 亚洲中文字幕2020| 日韩爱爱一区二区三区| 你想要的我都给你→久久99亚洲高清观看| 亚洲av无一区二区三| 日韩啊av不卡一区二区| 9cao在線精品免費| 在线播放亚洲欧美自偷自拍另类视| 中文字幕在线视频久| 韩国Ⅴ欧洲V日本VA片在线观看| 国产三级三级三级免费| 日本电影一区二区5566| 9cao在線精品免費| 日韩一级 片内射视频群批| 成人精品h动漫1区2区| 色婷久久yyy三级三级网站| 午夜大片免费完整在线看| 免费动漫无遮挡免费网站| 亚洲国产专区视频在线| 国产精品男女星性猛交| 91中文字幕在线视频| 小泽av一区二区无码第一页| 欧美日韩国产第一区二区| 中文字幕福利一区二区不卡| 国产精品va在线观看二| 四川少妇山上打野战| 最新91午夜福利在线| 人妻少妇无码不卡专区| 成人午夜电影免费观看| 免费一级全黄少妇性色生活片内射 | 免费看Ap片久久久久久久久久久| 男女晚上做爽爽的视频无遮挡| 自拍影视国产亚洲| 亚洲精品嫩模少妇在线播放| 亚洲Aⅴ无码综合一区二区三区| 国内欧美日韩一区| 亚洲人成伊人成综合网99精品 | 女人自慰www免费看| 福利进入入口成人在线免费| 国产乱人伦AV在线无码播放 | 亚洲国产丝袜美腿在线播放| 100款进入夜间软件下载| а天堂网www最新版资源| 淫叫视频啊…用力草| 亚洲一区二区精品免费| 91香蕉视频日本在线| 国精产区一区二区三区| 超碰毛碰免费观看互動交流| 91啪国产午夜福利在线观看| WW网站免费观看大| 国产视频久久国产香蕉| 18无日本十八禁无遮无挡| 又黄又大又黑又粗的视频网站| 乱人伦新中文无码视频| 国产成人麻豆免费看| 一区不卡字幕中文字幕芒果一区精品国色天香 | 免费无遮挡视频视频| 中国免费a级毛片| 国产精品又黄又粗视频| 午夜视频在线观看国产18| 成人男女av片在线观看| 国产大学生系列在线观看| 99久久www免费人成精品| 国产一区二区精品黑丝| 无码人妻久久一区二区三区APP| 992tv人之初在线视频官方| 腿张开我要添到你高潮h漫画软件| 美日韩一区二区三区com| 热99国产精品这有里视频| 午夜福利电影院在线观看| ゆきえ52美熟女に大量中出し| 图片欧美亚洲视频| 日韩不卡av电影| 97在线无码免费人妻视频| 亚洲一区 欧美一区| japanese日本少妇丰满直播| 久久久萌精品成人一区二区| 中文字幕熟妇久久久人妻| 在线观看欧美日韩国产成人| 国产伦子系列视频6| 六月婷婷国产精品综合| 军人开荤后H拔不H| 国产丝袜丝视频在线观看喷水| 麻豆国产96在线 | 免费日韩美女网站视频| 久久免费观看视频| 国产精品自在在线午夜区app | 午夜视频免费男女爽爽影院| 中文字幕精品亚洲字幕日韩| 丁香五月网正在中文字幕| 精选国产污视频在线观看| 在线国产平台免费观看视频| 久久久一区二区中文字幕 | 本道高清无码不卡在线视频播放DV| 一区二区三区久久精品| 91免费黄色无删减在线| 综合久久亚洲精品| 国产a精品在手机视| 天天躁日日躁狠狠躁综合| 国产高清视频一区二区在线观看 | 欧美爱爱网站| 日本免费不卡视频| 成人性色生活片免费看爆迷你毛片| 无码少妇一级AV片在线观看| 在线播放亚洲欧美自偷自拍另类视| 深夜?级毛片视频免费| 久久久精品香蕉| 福利一区二区最新视频光根电影院yy手机播放 | 日韩精品一区二区在线视频播放 | 任你干草精品视频不卡| 国产在线成人av| 国产一区二区射精| 亚洲日韩精品免费视频91蜜桃| 亚洲狠狠丁香婷婷综合久久久| 亚洲国产最新?V首片| 日韩不卡av电影| 亞洲一區二區精彩視頻| 一级毛片免费看傲雪网| 午夜福利一区二区在线观看| 自拍一区视频| 国产女人作爱视频| ゆきえ52美熟女に大量中出し| 国产yw88免费观看网站| 伊人网在线播放| 热久久这里只有精品免费| 亚洲国产成人综合青青| 最近精品国产三级a∨在线| 中文字幕日本精品一道| 日本高清一区二区三区水蜜桃| 97无码高清精品专区| 亚洲最快最全在线视频| 超碰毛碰免费观看互動交流| 亚洲?v色香蕉一区二区三区蜜桃| 一键去除衣的网址| 亚洲男人的天堂久久香蕉网| 午夜福利一区二区三区观看| 老熟女洗澡maturepom| 97国产在线观看免费视频播放 | 精品国产免费久久久?v| 男同专区一区二区三区| 精品久久一级毛片| 一区二区三区手机视频在线观看| 亚洲欧洲精品在线| 波霸在线精品视频免费观看| 校园亚洲春色另类小说合集| 真人做受120分钟视频| 久久网国产精品色婷婷免费 | 国产成人亚洲综合无玛| 亚洲性色av乱码字幕无线观看| 免费人成影视在线网战| 欧美亚洲日韩中文2019| 欧美一级黄色录相| 制服中文字人妻中字中出| 日本欧美中文| 亚洲成人播放| 丝袜老师综合网亚洲| 丝袜美腿国产亚洲综合| 国产aaa大片免费观看| 狠狠色综合一区二区中文字幕激情电影院 | 国产片成人在线观看| 西西人体444www大胆无码视频| 国产电影一卡二卡三卡四卡| 亚洲AV永久无码动漫在线观看| 中文字幕精品亚洲字幕日韩| 欧美亚洲日韩 国内自拍| 九九九国产精品免费观看| 久久99国产精品二级毛片| 美国乱爱性全过程免费观看| 免费看Ap片久久久久久久久久久| 最美情侣视频的免费观看方法| 成年女人视频在线观看15| 免费久久香蕉网站| 亚洲精品高清久久一区二区| 午夜视频免费男女爽爽影院 | 好爽又高潮了毛片无码| 中文一日韩一视频一国产| 欧美日韩中文亚洲视频专区| 国产精品久久久影院日本| 免费精品人在线二线三线| 人妻少妇精品中文字幕A V蜜桃| 岛国高清无码在线| 97影院手机在线| 亞洲國產精品久久人人愛| 91精品国产欧美一区二区三区| 好多水好硬好紧好爽视频| 成人综合激情在线| 男人的天堂网在线最新版www| 高清免费av在线播放不卡| 亚洲 欧洲 偷拍 校园 另类| 久久亚洲一区 不卡无码AV| a级吸乳电影在线观看| 国产成人精品2021涩涩屋| 亚洲男人的天堂久久香蕉网| 2018国产先天一级天天弄| 国产精品v片在线观看不卡| 日韩丰满成熟少妇性生活高潮视频免费播放 | 激情久久av一区av二区av | 五月天一区二区三区精品无码视频| 人妻爽爽爽在线一区二区| 精品久久久久久无码专区小说| 最新国产亚洲中文字幕视频| 粗大的内捧猛烈进出爽免费视频| 日韩毛片在线视频播放| 国产成了人午夜福利| 久久婷婷丁香五月综合开心| 亚洲国产精品ⅴ?在线播放| 国精产品一二三区电影| 大地资源在线播放观看动画| 亚洲一区二区 国产精品| 黄频在线免费观看一区二区| 国产美女91精品在线观看| 免费久久香蕉网站| 榴莲视频免费污| 18p精品无码在线观看| 国产亚洲精品在天天在线麻豆| 中文字幕性爱在线观看视频| av一区二区三区免费最新网站| 亚洲日韩精品a片无码麻豆| 美女黄色国产福利网站视频| 亚洲国产综合专区在线观看播放| 欧美视频在线一区二区三区| 久久久久国产成人免费观看| 亚洲无码啪啪网站| 亚洲日韩激情中文字幕| 国精产区一区二区三区| 厨房一次又一次的索要刷碗穆天阳视频| 全又大粗又黄又爽少妇片 | 国产精品欧美亚洲大片在线观看| 国产成人亚洲精品另类在线| 国产va免费精品观看精品美女| 班花在教室轮流澡到高潮视频 | 无码国产精品一区二区免费3p| 97人妻人人添人人| 国产精品一区二区久久无码 | 日本一区二区三区电影在线| 精品人妻久久久久一区二区高清观看视频 | 亚洲国产欧美在线人成日韩精品一区二中| 欧洲亚洲欧美国产日本精品 | a∨潮喷大喷水系列无码番号| 亚洲国产精品综合久久网络亚洲国产成av人天堂无码 | 香港A级午夜毛片视频免费| 日韩AV无码久久精品免费3d| 亚洲色偷偷狠狠综合网| 97精品国产一二区| 九九艹视频免费观看| 污污网站下载| 亚洲精品不卡在线高清| 中文字幕2019一一区| 绑架美女性感美女视频| 免費看國產精品久久久久| 国产精品黄大片观看| 一区二区三区国产精品保安| 别揉我奶头啊嗯调教| 免费精品人在线二线三线| 日韩人妻无码影片| 国产亚洲亚洲高清图 | 在線精品91青草國產在線觀看| xxxx性欧美高清在线| 自拍影视国产亚洲| 国产亚洲综合一区二区三区观看视频| 久久久精品免费齐齐| 国产成人精品免费视频大片| yw尤物国产在线看麻豆| 天仙TV萌白酱女仆喷水视频| 狼色精品人妻在线视频下载| 国产超aⅤ男人的天堂| 亚洲美腿丝袜无码专区| 久9成人免费视频在线| 亚洲欧洲日韩av综合在线观看| 国产成人在线观看高清无删减| 成年无码专区在线视频| 无码任你躁久久久久久牛牛| 亞洲國產成人久久笫一頁 | 亚洲午夜福利理论片在线播放| 福利国产在线观看| 秋霞成人午夜电影免费| 91香蕉视频成人| AA片子吇中文字处女| 欧美日韩精品处破系列| 久久久精品免费观看 国产| 最近最新中文字幕大全免费1| 日韩免费高清一级毛片無遮擋| 国产一级黄片观看| 日本三级香港三级人妇r| 国产高清综合色另类视频| 午夜视频在线观看国产片不卡| 毛片AA级毛片区| 精品国产āv网站大全| 国产精品成人久久综合| 国产乱码久久| 久久无码精品无码洲日韩麻豆| 日韩精品成人av高清在线观看| 惠民福利国产精品v欧美精品∨日韩| 黄色大片高清久久久| 美女被一区二区三区美女视频免费| 午夜精品影视| 五月天一区二区三区精品无码视频| 久99久热只有精品国产| av无码精品久久久久精品免费| 亚洲字幕成人中文在线观看| 侵犯女教师三上悠亚av中字| 亚洲日韩精品免费视频91蜜桃| 51成人免费影院| 少妇内射精品888视频| 久久久精品国产亚洲亚洲| 亚洲国产精品ⅴ?在线播放| 国产换妻视频在线高清| 中文在线观看一区粉嫩av| 精品阁在线观看视频妖精网| 午夜在线播放免费人成影视| 黄色一级毛片在线看| 无码精品人妻免费| 天天看永久网站视频大全免费| 超碰婷婷日韩一区二区三区| 久久婷婷丁香五月综合开心| 色五月开心五月深爱婷婷| 日韩亚洲中文欧美| 中文字幕日本精品一道| 又粗又长又硬A级毛片| 草莓视频成人影院| 欧美日韩国产一二三四五区| 欧美不卡无聊在线| 一区二区三区手机视频在线观看| 91精品国产高久久久久久综合| 国产亚洲制服日韩中文在线| 在线播放亚洲欧美自偷自拍另类视| 成·人免费无码视频在线观看 | 一本色道无码dvd视频| 亚洲二区亚洲一区在线观看| 调教sm重口h文hy| 成人午夜在线视频免费观看 | 精品主播在线影院| 成人一区视频| 午夜视频在线观看国产18| 精品主播在线影院| 在线看AV一区中国av无码免费| 草莓视频污免费| 狼色精品人妻在线视频下载| 青青草国产午夜精品直播时间| 中文字幕久久精品不卡| 国产乱一区二区三区视频| 两个人看的视频播放www | 精品国产成人| 午夜伦理不卡片2018在线| 人妻少妇无码不卡专区| 超碰国产白浆日韩无码专区| 中文精品日韩欧美在线播放| 国产片成人在线观看| 亚洲国产无码精品在线观看吃玉脚 | 国产永久免费AV在线观看| 日韩欧美国产v一区二区三区| 黄色影视在线免费观看| 日本xxxx18视频在线观看| 一键去除衣的网址| 九九热这里只有国产精品视频| 在线观看三级片国产| 男人猛操女人免费看| 观看亚洲免费黄片| 免费免费啪视频视频观看| 国产乱子伦不卡视频| 特黄做受又大又粗又长又硬爽| 奇米777888四色精品人人爽| 亚洲制服丝袜中文字幕专区| 欧美538国产视频观看| 日本三级aaa 一区二区视频| 精彩久久久久久中文字幕| 最新91午夜福利在线| 亚洲欧美综合另类中字| 国产成人精品2021涩涩屋| 99久久www免费人成精品| 国产大学生系列在线观看| 国产欧美日韩一级二级三级| 国产在线拍揄自揄拍免费| 福利国产在线观看| 亚洲精彩视频在线播放| 精品一区二区三区Av麻| 国产精品三级在线播放| 欧美综合精品激情久久久久| 亚洲精品男女视频在线观看| 精品一区免费观看| 91人妻人人澡人人爽从精品| 你懂的国产电影在线观看| 亚洲女优中文字幕| 91无码人妻一区二区三区| 夜夜骚成人网址| 精品国偷自产在线不卡短视频| 久久99国内精品免费| 亚洲熟妇另类无码久久久| 国产极品AV不卡在线| 中文字幕在线人成视频欧美| 日本无遮挡吃奶摸下激烈视频| 成人伦理电影在线观看免费| 久久精品亚洲国产视频| 无码任你躁久久久久久牛牛| 中日国产小视频一区二区三区| 免费久久香蕉网站| 年轻丰满迷人的邻居少妇| 亚洲精品国产品国语在线| 国产一级特黄全黄真人片| 国产亚洲精品午夜国产福利| 免费日韩美女网站视频| 日韩精品国产欧美| 国产乱子仑片视频观看| 欧美视频在线一区二区三区| 九九艹视频免费观看| av无码精品久久久久精品免费| 国语清纯对白在线播放| 午夜日韩欧美一级| narutomanga玖辛奈之乳| 国产一级 片内射久久| 国产日韩精品大片| 宝贝我硬了叫大声点好疼视频 | 免費看國產精品久久久久| 2021日日拍夜夜爽人5兽视频| 人妻在线资源| 亚洲国产成人精品无码一区二区三区| 在线精品亚洲第一区香蕉| 日韩无码毛片AV一区二区| 成人在线亚洲高清| 丰满人妻无码aⅴ一区二区无码 | 800αV色多多视频在线| 久久婷婷丁香五月综合开心| 裸体肌肉男自慰Gay网站| 日韩爱爱精品一区二区三区| 欧美亚洲日产小说图片综合| 婷婷五月天色婷婷在线| 免费特级黄毛片在线成人观看| ⅴa亚洲v天堂a亚洲色无码专区| 成人一区二区免费| 国产成人麻豆亚洲综合无码精品| 高清不卡的无码在线视频免费观看| 久久网国产精品色婷婷免费 | 91大神久久99精品| 9cao在線精品免費| 动漫国产精品一区二区三区啊啊| 免费无码又爽又刺激A片软件妖精| 召唤魅魔竟是妈妈来了第一季| 欧美久久人人网| 日本a在线播放| 国产老女人久久毛片| 清纯唯美经典一区二区| 欧美日韩精品1卡2卡三卡| yw尤物国产在线看麻豆| 亚洲午夜福利理论片在线播放 | 日韩Av无码新作| 美女美裸体视频18国产免费| 午夜影院免费观看| 明星一级a毛片免费观看| 人妻丰满熟妇AV无码区APP| 久久婷婷综合精品| 久久久青草大香| 红桃视频黑人内射| 完全偷拍带回两邻居人妻| 成人久久免费视频观看 | 久久精品亚洲国产视频| 国产md视频一区二区三区| 亚洲二区亚洲一区在线观看| 91在线无码精品秘?入口9色 | 网友分享国产精品九九播放心得| 国产精品国产三级国产?V主播| 欧美日韩精品一区二区三区在线| 亚洲无码一区二区aⅤ污| 天天综合网色在线观看| 国产专区在线影视日韩精品| 國產亞洲福利精品一區| (愛妃)久久久久亚洲AV无码专区喷水 | 欧美亚洲另类丝袜综合图片| 免费在线看成人毛片| 精品欧美不卡一区在线观看| 亚洲成人午夜综合网| 国产午夜免费一区二区三区| 在线播放欧美极品| 亚洲优物视频国产AAA片| 三级黄色大片| 又粗又硬又爽毛片免费放| 国产精品私密保养| 国产又黄又长又大| 男女网站永久免费精彩视频| 国产在线成人av| 亚洲欧美综合另类中字| 中文国产在线精品国自产拍愿| 久久久精品香蕉| 古装一级无遮挡a毛片免费观看| 一级a性色生活片久久无少妇一级婬免费放 | 国产亚洲精品久久久久久久无码| 无码人妻一区二区三区免爱妃视频| 日本全部一级视频| 欧美人人操人人摸| 一级精品偷拍| 欧美精品自拍视频在线观看| 国产精品九九99久久| 靠逼软件下载| 侵犯女教师三上悠亚av中字| 欧美婬香色综合欧美| 大热色香蕉久久| 国产精品区一区二区兔费| 亚洲特级毛片无码专区| 久久香蕉视频了免费的看| 37西方大但人文艺术| 色妞av永久一区二区国产a| 三级黄色国产视频| 国产日韩欧美一区二区三区久久毛多色婷婷| 中文字幕2019一一区| 国精产区一区二区三区| 久久亚洲a片com人成人| 久久99黄毛大片| 中文字幕久毕香港三级片| 精品少妇人妻大屁股白浆无码| 色资源在线视频在线| ゆきえ52美熟女に大量中出し| 国产美女一级淫片| 大香伊蕉在人线国产2019| 亚洲综合尤物在线| 在线观看欧美日韩国产成人| 在线观看不卡片免费三级片| Aⅴ不卡在线永久免费观看| www一区二区www在线视频| 99熱這里只有精品國產99| 午夜伦理不卡片2018在线| 欧美二区亚洲| 欧美手机在线黄片| 亚洲?v色香蕉一区二区三区蜜桃| 亚洲字幕成人中文在线观看| 蜜桃视频app色版永久免费 | 18禁动漫黄网站禁片免费观看| 国内2021自在自线| 国产乱肥老妇精品一区二区| 亚洲一级不卡av| 国产精品成人免费公开视频| 免费在线观看a国产种片| 黄色香蕉网站在线观看 | 一个人看的www高清在线观看| 欧美成人免费高清在线观看| 日韩欧美中文字幕乱码在线| 全部裸体做爰大片免费看网站| 国产精品你懂的| 秋霞午夜人妻中文字幕影院| 色播影院av无码一二三四区| 性感美女视频一区| 欧美视频在线观看日韩| 人妻少妇无码不卡专区| 亚洲免费高清大片| 欧美永久精品大片综合NBA免 | 裸体老太老妇人SE×| 蜜桃一区二区免费视频观看| 手机在线免播放器av观看| 中文字幕熟妇久久久人妻| 国产91福利精品| 2021亚洲精品午夜精品国产| 色综合香蕉網| 成人午夜在线视频免费观看 | 欧美一级理论片在线一| 精品卡一卡二卡三免费| 波多野结衣AV一区免费在线| 资源新版在线天堂| 136福利导航久久精品| 久久婷婷丁香五月综合开心| 我和岳妇做爰1一5高玉梅视频| 99热成人精品免费久久| 一级特黄录像免费播放 视频| 亚洲一级不卡av| 人妻无码第一区二区三区网址| 91精品国产综合久久精品麻豆| 91啪国产午夜福利在线观看| 国产高清在线91| 热re久久精品国产99热| 亚洲是亚洲手机看黄片| 欧美精品中文字幕亚洲| 精品不卡毛片a在线| 3D怪物强人类网站| 亚洲日韩欧美在线不卡| 2023日本精品免费在线视频| 最新中文字幕av无码专区1| {日韩精品一区二区三区在线观看| 2021日日拍夜夜爽人5兽视频| 一本色道无码dvd视频| 小草社区在线观看播放| 黄网站无遮挡在线看底下没有毛 | 精品视频在线免费看| 全黄色真人片一区亚洲激情操| 综合在线亚洲欧美| 日本精品久久久久中文字| 亚洲男人的无码天堂2017| 又大又粗又硬又长3p免费视频| 国产精品v片在线观看不卡| 国产欧美日韩综合另类| 亚洲性爱 国语对白| 大白腿美女屁股啪啪网站| 国产亚洲综合一区二区三区观看视频| 国产黄色一级片在线| 欧美人牲交ā欧美精区日韩| 国产精品一级AAAA在线看| 国产女人精品暖暖在线播放| 日本无码欧美激情视频二区| 亚洲日本Va午夜在线影院| 亚洲Aⅴ无码电影在线播放| 国产高清视频一区二区在线观看 | 一区二区三区久久精品| 在线理论片在线观看| 国产女人精品暖暖在线播放| 成人毛片18女人毛片免费看| 亚洲高清宗合视频| 亚洲特级毛片无码专区| 又黄又粗又大又硬的免费视频| 精品一区二区三区不卡蜜臂| 亚洲最新在线观看| 日韩欧美国产v一区二区三区| 久久91精品福利久久久久久| 日韩插下面视频在线播放| 午夜伦理不卡片2018在线| 久久久一区二区中文字幕| 国产精品国产三级国产avapp| 福利视频成人| 国产欧美日韩精品第二区 | 最好看的2018中文2019| 亚洲AV无码一区二区三区四区| 国产强奷在线播放免费| 亚洲国产成人综合青青| 国产tv黄片视频在线观看| 国内一区亚洲综合图区欧美| 西西人体44www大胆高清| 先锋影音在线| 美女黄色国产福利网站视频| 男女搞基视频软件| 美女黄视频在线观看| 经典国产三级主播无限观看 | 亚洲男人的无码天堂2017| 亚洲高清成人av在线| 好爽又高潮了毛片无码| 中文字幕日本精品一道| 久久五月激情综合无码| 国语对白熟女硬了| 天堂网在线免费观看| 国产精品一区二区在线观看麻豆| 亚洲欧美日韩香蕉在线在线观看 | 美女隐私秘视频黄www曰本| 无遮挡aaaaa大片免费看| 国产精品又粗又长又大又刺激| m3u8在线观看电影| 一夲道香蕉亚洲| 国产片av国语在线观看| 在线观看亚洲欧美日韩国产| 中文字幕天堂资源网最新版| 综合日本久久久久| 992tv人之初在线视频官方| av超碰在线观看| 亚洲一级无码电影| 成人日韩免费高清在线观看 | 日本成人系列三区| 无码任你躁久久久久久牛牛| 国产国语对白无码视频在线观看| 91久久精品美女高潮喷水app| 小H短篇辣肉各种姿势动态图| 高清无码在线观看AV日韩欧美视频在线| 美女黄a视频免费网站一区 | 99re在线精品视频| 国产三级一区二区| 亚洲综合久久综合| 一级免费国产视频| 黄色app香蕉视频| 大陆最新精品亚洲国产2021| 久久精品亚洲国产视频| 亚洲人色欲AV毛片18精品 | 成人免费午间影院在线观看| 又紧又爽精品一区二区| 欧美日韩中文国产vA 另类| 人妻无码一区二区三区| 日本三级aaa 一区二区视频| 看全黄大色黄大片视频| 久久久精品免费齐齐| a级黄色 一区二区| 婷婷五月天色婷婷在线| 久久99黄毛大片| 国产精品视频分类1| 国产精品jk在线观看| 亚洲综合区无码| 中日国产小视频一区二区三区| 国产亚洲精品免费在线观看| 惠民福利国产欧美精品一区aⅴ影院 | 波霸在线精品视频免费观看 | 国产精品高呻吟久久AV无码| 日韩动漫一区二区三区| 糖心vlog下载地址日韩精品中文字幕日日骚 | 午夜大片免费完整在线看 | 免费视频在线观看一区| 欧美日韩国产高清| 性感人妻福利视频一区| 日韩亚洲专区中文字幕| 日韩视频在线播放不卡| 午夜神器下载污污软件| 欧美视频在线免费观看专区| 国产高清视频一区二区在线观看 | 麻豆精品国产一区| 理论电影日韩一级| 久久国产精品尤物网站| 97人妻资源总站| 殴美熟妇欲乱精品| 日本最新伦中文字幕久久熟妇视频| 国产情精品嫩草影院88av | 别揉我奶头啊嗯调教| 不戴套插女人视频在线观看动漫版 | 桃花阁成人网在线观看| 夜片视频在线观看视频| 国产日韩三级| 亚洲无毛av在线| 欧美精品中文在线| 香蕉视频午夜视频| 菠萝蜜视频在线观看播放10| 亚洲男人的无码天堂2017| 少妇下面又紧水又多视频| 国产在线观看永久精品| 日本欧美中文| 久久久久久免费精品推荐| 亚洲综合色噜噜狠狠网站高清| 中日少妇精品一区| 亚洲精品一二三四区在线观看| 九九热这里只有国产精品视频| 超碰毛碰免费观看互動交流| 成人免费网站无打码| 亚洲女优中文字幕| 99re5热在线视频播放| 一区二区三区久久精品| 永久免费无线在线看黄无广告| 国产精品男女星性猛交| 国产成 人 亚洲 欧美视频| 亚洲特级毛片无码专区| 国产精品久久人人爽人人| 久久精品亚洲动漫无码剧情简介| 久久久久国产一级毛片高清版A| 日本三级欧美亚洲| 国产成人精品影院狼色在线| 亚洲熟女一区二区精品成人| 免费在线视频一级不卡| 七七电影天堂| 我要看特级黄色日| 亚洲中国久久精品无码| H福利在线观看网站| (愛妃)久久久久亚洲AV无码专区喷水| 国产在线xxxx五月综合一区二区 | 人妻在线资源| 无码av高潮喷水无码专区| 好大好硬好深好爽gif图| 伊人久久综合精品无码AV专区国产AV成人精品播放 | 狠狠色综合一区二区中文字幕激情电影院| 日本aa在线观看| 男人的天堂网在线最新版www| 国产精品色欲AV| 榴莲视频免费污| 国产精国产中文制服丝袜另类| 国产福利视频一区二区在线观看| 日韩一级 片内射视频群批| 亚洲一二区人妻| 人人妻人人澡欧美91精品| 亚洲激情无码中文字幕| 亚洲精品男女视频在线观看| 国产亚洲精品生肉动漫资源网| 亚洲精品男女视频在线观看| 天堂网在线免费观看| 国产无码网页在线观看| 国产精品亚洲一区二区无码国产| 三上悠亚被弄到痉挛惨叫视频| 影音先锋在线免费资源| 久久中文影视少妇| 国产又黄又湿无遮挡在线观看| 亚洲色性性性性性| 综合精品久久| 亚洲二区亚洲一区在线观看| 三根撑到极致哭着求饶H| 欧美色道久久88综合亚洲精品| 18se亚洲成人无码| 亚洲a∨无码国产精品夜色午夜| 一级精品偷拍| 国产成人毛片精品不在线| 性爱一级片国产精品视频| 国产一级理论片| a级吸乳电影在线观看| 最好看的最新高清中文视频| 国产熟女久久精品| 欧美日韩中文国产vA 另类| 欧美大香线蕉线伊人久久75| 日韩熟女高清自拍图片专区| 亚洲日本精品99这里都是精品这里有精品| 国产精品一区二区乱岳电影 | 精品国偷自产在线不卡短视频| 久久久青草大香| 国产尤物精品一区二区三区| 久久国产精品国产精品| 国产精品嫩草影视免费观看| 蜜臀色欲无码人妻精品| 久久久久久AV综合网站| 亚洲欧洲日韩av综合在线观看| 女教师之痴汉电车BD| 免费一级全黄少妇性色生活片内射| 丰满人妻无码aⅴ一区二区无码| 久久91精品福利久久久久久| 人妻无码中文幕无码电影| 67194成l人在线观看线路| 国产真实校园在线观看| 在线国产平台免费观看视频| 婷婷激情丁香| 日产一区二区综合99热精品成人 | 国产免费网站一二三四 | 视频免费1区二区三区| 成人奭片免费观看| 夜夜夜性综合网| 黄色无码视频又粗又长| 自拍影视国产亚洲| 美女美裸体视频18国产免费| 黑人巨大精品欧美黑寡妇AV免费| 手机在线视频网站| 中文字幕久久网五月激情婷婷网| 91精品青草福利久久午夜| 国产三级一区二区| 无遮挡又黄又大又爽 | 青青草国产午夜精品直播时间| 亚洲国产精品无码久久电影| 图片区 偷拍区 小说区免费| 在线丨暗哟小u女精品视频| 男女性爱视频一级片| 精品国产av无码| 国产精品国产三级国产avapp| 99精品免费在线观看| 欧美日韩精品一区二区三区激情| 日韩欧美国产资源| 久久只精品99品6免费久| 乌克兰少妇精品无专区| 中文一日韩一视频一国产| 99精品免费在线观看| 免费看18级做a爰片久久| 中文字幕精品亚洲无码| 中文字幕天堂资源网最新版| 国产精品嫩草影院?V| 永久免费的黄页网站4188| 激情欧美一区二区三区偷拍| 日韩精品一区二区三区四区不卡| 国产成人福利在线| 国产亚洲欧美不卡精品| 制服中文字人妻中字中出 | 9久久9毛片又大又硬又粗| 在線精品91青草國產在線觀看| 2020AV天堂手机在线点播| 久久久久久做三级国产 | 免费观看动漫美女被靠网站| 婷婷五月日韩?V永久免费| 亚洲人成伊人成综合网99精品| 欧美 国产 综合| 国产在线观看91一区| 又大又粗又硬又长3p免费视频| 日本不无在线一区二区三区视频| 日本免费在线观看| 一级全视频全黄色搞B免费| 一级a看片在线观看| a级吸乳电影在线观看| 国产农村最撮五十路熟女| 亚洲日本综合中文在线| 国产视频A ⅴ在线播放| 最新仑乱免费视频| 国产成a人亚洲精V品无码久久| 777久久人妻少妇嫩草av| 久久免费观看视频| 色香色欲天天天无码专区| 毛片视频网站免费无遮挡| 99re在线精品视频| 国产网红精品| 无遮挡aaaaa大片免费看| 理论电影日韩一级| 两个人免费观看日本的| 国产女人高潮好舒服在线观看| 精品久久久久亚洲精品| 国产电影一卡二卡三卡四卡| 亚洲深夜视频无码天堂| 97影院手机在线| 91久久精品美女高潮喷水app| 日韩亚洲精品乱码| 国产XXXX色视频在线| 欧美午夜成本人视频| 免费免费啪视频视频观看| 丝袜人妻无碼专区视频| 一区二区三区国产精品uuuu| 一级精品无码一级| 欧美亚洲日韩在线娱乐论坛| 中文字幕无码专区日韩精品| 自拍高潮了的视频网站| 草草影院人妻无码专区91| 欧美在线日韩| 日韩亚洲精品视频在线| 漂亮人妻洗澡被公强日日躁| 丁香花免费高清视频全集动漫| 精品自拍偷拍视频| 国产午夜理论不卡电影院888| 欧美日韩精品中文字幕日韩人妻在线乱码 | 黑料不打烊隐藏入口GITHUB| 国产嫖妓成人精品视频| 六月婷婷国产精品综合| 国产无码在线视频制服丝袜 | 国产黄页免费在线观看| 强行破瓜稚嫩粗暴顶弄哭喊| 国产在线你懂的av| 在线播放中出白浆直流| 国产乱人伦偷精品视频免费| 18禁动漫黄网站禁片免费观看 | 久久草在线视频免费| 日本精品99久久久久| 国产精品妇女一二三区| 亚洲AV无码一区二区三区四区| 国产亚洲视频在线手机版下载| 国产精品人妻久久毛片一| 国产精品色欲AV| 国产在线你懂的av| 日本免费电影不一样的一区二区| 野外露出国产在线视频| 三个水嫩大学生视频| 涩涩日韩黄色无码一区二区三| 欧美亚洲自拍日韩在线| 中文字幕AⅤ第一页| 亚洲中国久久精品无码| 久久aⅴ无码av免费一区| 亚洲熟女少妇| 欧美精品黑人粗大欧| 三级 激情 欧美 在线| 黄无码片在线免费观看| 国产高潮一区二区三区无码| 免费精品国偷自产在线洗澡| 成人免费午间影院在线观看| 中文字幕在线人成视频欧美| 亚洲精品无码在线观看| 亚洲精品污污网站在线播放| 精品熟妇无码av免费久久| 亚洲A∨无码久久精品超碰| 欧美性开放久久精品| 日本中文字幕一区二区不卡在线| 亚洲无码在线观看成人网站| 日本成本人免费观看直播| 欧美日韩色片| 校花高潮抽搐冒白漿| a级吸乳电影在线观看| 97se网在线看视频69| 精品人妻系列无码久久久久久| 国产老女人久久毛片| 99久久精品毛片无码一区三区| avtt天堂亚洲一区中文字幕| 最近中文字幕MV最新更新时间 | 日韩精品国产二区三区久久看| 三级片日本免费亚洲| 岛国动作片观看在线麻豆 | 欧美大片以及精品美模顾欣欣无圣光| 中文精品日韩欧美在线播放| 免費看國產精品久久久久| 99热国产这里只有国产中文精品| 国产嫖妓成人精品视频| 亚洲免费高清大片| 日韩色成人av电影| 开襟乳液狂飙网站| 日韩视频在线观看中文| 日韩欧美在线xxx| 欧美亚洲日韩中文2019| 超碰亚洲国产精品人人人| 日本高清在线www3344| 亚洲人成午夜福利在线观看| 午夜福利一区二区三区观看| 国产精品一区二区成毛片| 半夜翁公吃我奶第七十章| 午夜在线观看国产精品| 极品色欧美三区四区| 永久精品一区二区三区亚洲| 手机在线视频网站| 日韩刺激无码网站| 曰本女人牲交大片| 亚洲黄色成人综合| 国产真实校园在线观看| 国产盗摄精品一区二区三区| 久久精品亚洲一级片| 国产女人体一区二区三区国人馆| 国内精品免费久久久久电影院97| 精品国产一区二区久久久毛片| 亚洲福利二区| 岛国毛片在线播放| 无码精品一区二区无码| 8x8x极品国产在线| 久久综合网站久久综合网| 激情综合久久| 美女黄视频在线观看| 久久精品亚洲一级片| 麻花豆文化传媒| 影音先锋在线免费资源| 亚州欧美综合色图片| 佐山爱一区二区三中文在线观看| 国产精品v片在线观看不卡| ⅴa亚洲v天堂a亚洲色无码专区| adc自拍亚洲欧美影院| 一区二区三区妓| 亚洲日本Va午夜在线影院| 高清无码夜晚福利一区二区三区| 中文字幕精品亚洲无码| 日本高清视频中文无码不卡| 国产精品乱伦WWW| 在夫前强硬侵犯丰满美人妻| 国产免费的一级av片| avtt天堂亚洲一区中文字幕| 欧美手机在线黄片| 国产日韩欧美一区二区三区久久毛多色婷婷 | 天天看片永久免费AV下载app| 最新亚洲精品国产理论电影| 亚洲欧美一区二区日韩中文字幕| 夜夜骚成人网址| 91香蕉视频污视频| 欧美成人免费体验| 日韩中文字幕在线看 | 色妺妺av手机版| 激情五月天亚洲| 污污网站下载| 无码精品久久一区二区三区| 午夜精品影视| 日韩尤物社区在线视频观看| 日韩欧美视频一区aaa播放| 别揉我奶头~嗯~啊~视频在线观看| 午夜大片免费完整在线看| 国产成人精品无卡无码AV在线| 国产人成午夜免电影观看| 亚洲日韩精品免费视频91蜜桃| 亚洲成人播放| 裸体老太老妇人SE×| 午夜一级毛片在线免费观看| 精品99国产视频| 日韩性色在线观看免费| 男女性爱视频一级片| 亚洲av片不卡无码久久欣赏网| 国产女人作爱视频| 亚洲黄色视频免费播放| 了解最新午夜99精品视频| 国产日产欧美欧韩在线| 日本免费在线观看| 在线视频国产αⅴ| 欧美亚洲日韩不卡在线在线观看| 欧美午夜A片缴情性影院竹菊影視| 亚洲日本精品99这里都是精品这里有精品| CHINESE同性基友GAY勾外卖| 真人直播视频免费网站 | 性一交一乱一乱一视频| 亚洲字幕成人中文在线观看| 色五月亚洲综合伊人久久| 亚洲片无码在线看| 免费人成影视在线网战| 丰满熟妇岳av无码区hd| 人妻少妇精品中文字幕A V蜜桃 | 热久中文字幕在线观看| 国内精品免费久久久久电影院97| 国产精品白浆无码流出免费看| 午夜理论日本乱人伦片中文| 毛片无码一区二区三区A片视频| 制服中文字人妻中字中出 | 三根撑到极致哭着求饶H| 在线丨暗哟小u女精品视频| 亚洲国产福利一区二区在线| 高清无码中文字幕亚洲| 999国内精品视频免费| 欧洲色图网在线播放| 国产md视频一区二区三区 | 天天超碰开心2020| 影音先锋欧美性爱| 美女隐私秘视频黄www曰本| 男人到天堂去A线2019| 一区二区三区午夜免费| 国产疯狂女同互磨高潮软件| 欧美精品中文字幕亚洲| s色偷偷av男人的天堂京东热 | 免费人成影视在线网战| 夜夜夜性综合网| 亚洲成人午夜综合网| 亚洲成av人片无| 雨宫琴音一区二区在线视频| 在线看日本吃奶孕交| 成人黄网免费在线看| 漂亮妈妈5巴字开头| 国产+高清+无码+中文| 亚洲欧洲日本视频在线| 最新亚洲精品国产理论电影| 午夜大片免费完整在线看| 色天使久久综合给合久久97色| 男女性爱视频一级片| 丝袜人妻无碼专区视频| 亚洲A∨午夜精品一区二区三区 | 日本全部一级视频| 99热国产网红主播在线| 国产亚洲美女久久久久久男同| 100部无码刺激性A片| 亚洲国产精品日韩专区AⅤ| 久久精品视频这里有精品视| 777米奇色狠狠俺去啦777| 欧美国产三级电影| 人妻中文字幕91| 亚洲天堂老女人一区二区| 在线日韩人妻观看| 97久久综合精品久久久| 黄色免费在线短视频| 久久88香港三级台湾三级播放| 九九热这里只有国产精品视频 | 久久这里只精品国产re加勒比| 黄色毛片在线免费| 好色嫂子久久人妻久久爽| 国产va精品免费观看剧情介绍 | 国产人成午夜免电影观看| 婷婷丁香亚洲综合国产| 亚洲欧美中文精品激情在线| 日本亚洲免费观看| 蜜桃一区二区免费视频观看 | 思思热99re热在线视频| 日韩亚洲欧美国产成人五区| 亚洲欧美日韩中文字幕一区二区| 国产精品无码不卡尤物在线| 免费免费啪视频视频观看| h片在线观看网站| 免费高潮又爽又刺激的视频| 手机在线看永久AⅤ片免费| 成人午夜免费网站| 国产精品一区二区在线观看麻豆| 97久久精品久久久水蜜桃| 69影院毛片免费观看视频在线| 人禽伦免费交视频播放| 亚洲国产欧美日韩成人影视电影| 91人妻人人澡人人爽从精品| 一级全视频全黄色搞B免费| 桃花阁成人网在线观看| 亚洲卡一卡2卡3卡4精品| 国产精品久久久久久按摩| 亚洲欧美日韩国产资源在线观看| 日本一区二区三区乱交电影| 高潮毛片無遮擋高清免費視頻| 免费观看全黄做爰大片欲海记| 日韩欧美中文字幕乱码在线| av88中文字幕在线观看| 高清国产精品自在久久| 黄色成人亚洲一区| 久久久精品国产免费观看一区二区| 日韩Av无码新作| 暴躁老女人免费视频| 精品国产日韩欧美一区| 国产成人麻豆免费看| 久久久久久免费精品推荐| 精品人妻一区二区三区蜜臀| 久久免费看少妇高潮?片| 欧美成人一区视频| 国产md视频一区二区三区 | 国产女人18毛片水真多18| 本道高清无码不卡在线视频播放DV| 天仙TV萌白酱女仆喷水视频| 国产无码精品在线观看 | 亚AVAV天AV在线不卡| 另类乱黄乱码乱色a级天堂在播放 亚洲主播自拍无码视频在线播放 无码在线观看高清国产 | 非洲人与性动交ccoo| 手机看中文字幕一区无码| 狼色精品人妻在线视频下载| 特黄做受又大又粗又长又硬爽| 亚洲网站亚洲色偷偷av| 毛片大全高清不卡免费| 日本欧美一级二级三级不卡| 国产无码网址| 暴力H精品推荐自拍| 国产一国产一级毛片视| 免费黄色网址国产麻豆三区| 男人的鸡鸡插女人的鸡鸡| 小龙女洁白双腿张开娇羞| 五月天成人中文国产精品中文91| 三级三黄三级三黄三级三黄| 丝袜人妻无碼专区视频| 国产2024久久精品| 毛片黄色片在线观看| 久久精品黄片免费看| 欧美精品欧美专区| 久久免费视屏| 亚洲伊人久久精品| 黄色免费在线短视频| 久久国产精品激情| 国产xxxx视频在线观看软件| 好多水好硬好紧好爽视频| 宝贝对着摄像头自己做忘羡| 国产精品1区免费影视| 久久久亚洲男人的天堂一区二区三区| 欧美精品中文在线| 日韩福利一区二区| 一级毛品视频操逼视频| 日韩专区国产一区制服丝袜| 国产精品va在线观看二| 99国产揄拍国产精品人妻| 99久久久国产亚洲精品| 日本成人欧美激情在线| 99热国产这里只有国产中文精品| 少妇一级婬片免费放电影| 亚洲无线中文字幕| 國產精品免費久久久久電影| 亚洲欧美日韩久久精品mv| 综合欧美国产日本一区| 91麻豆精品秘密入口| 国产私拍在线播放| 日本六九视频69jzz| 免费无遮挡视频视频| 动漫国产精品一区二区三区啊啊| 免费看a级黄色片| 日日狠狠久久偷偷色综合蜜桃| 亚洲精品一区在线观看网站| 超碰在线隔壁老王日美女精品| 免费精品人在线二线三线| 中国一级特黄真人片久久| 深夜福利电影免费国产| 一级女人免费视频毛片| 日本无码少妇内谢视频| 日本中文字幕av每天更新| 丰满人妻无码aⅴ一区二区无码| 中文字幕精品亚洲字幕日韩| 国产mm1314无码视频在线观看| 亚洲国产精品无码久久小说| 一本到日本不卡在线播放| 国产高潮又黄又嫩麻豆| 韩国视频一区二区在线观看| 免费永久在线观看污污的网站| 国产日韩欧美午夜精彩视频| 最新中文字幕av无码专区1| 亚洲呦萝小初av| 强行破瓜稚嫩粗暴顶弄哭喊| 97中文字幕无码免费久久| 尤物成年网站未满十八禁| 成人男女av片在线观看| 国产精品一区二区1| 日本韩国欧美在线观看视频| 精国语对白刺激精品视频| 欧美手机在线黄片| 漂亮人妻洗澡被公强日日躁| 日韩欧美在线导航亚洲都市| 日韩人妻中文字幕无| 亚洲欧美日韩中文字幕一区二区| 欧美日韩亚洲视频一区| 亚洲国产成人精品无码一区二区三区 | 欧洲av免费在线观看| 亚洲一区二区三区爽爽| 亚洲欧洲日本视频在线| 亚洲国产高清理论片| 影音先锋成人资源| 国产在线在线手机观看| 日本播放一区二区三区免费| 思思久久96热在精品国产高清| 国产精品乱伦WWW| 免费日韩美女网站视频| 一级a性色生活片久久无少妇一级婬免费放| 欧美日韩精品一区二区三区激情| 国产第一精品蓝导航| 日韩国产传媒在线视频| 国产美女91精品在线观看| 日韩无码黄色| 午夜福利电影院在线观看| 日韩精品在线观看一二三区| 无码人妻久久一区二区三区APP| 久久亚洲一区 不卡无码AV| 亚洲无码二区三区粗大视频 | 亚洲色欲综合WWw| 亞洲男人av香蕉爽爽爽爽| aⅴ三级综合在线观看| 激情五月天亚洲| 有码无码中文字幕丝袜电影 | 深夜精品福利日韩| 亚洲高清视频免费的一区| japanese亚洲一区二区| 国产情精品嫩草影院88av| 久久999精品无码一区二区| 高清无码在线观看AV日韩欧美视频在线| 综合一区国产系列| 国产精品嫩草影视免费观看| 日韩美女色片| 一区二区三区中文心得| 高潮双飞av毛茸茸| 香港特级一级毛片免费观看| 精品伊人久久久大香线蕉欧美 | 三级 激情 欧美 在线| 亚洲精品在线精品尤物一区| 一个人看的www高清在线观看| 在线精品亚洲第一区香蕉| 五月亚洲一区二区| 国产91精品久久久久??51www在线观看| 久久99热东京热亲亲热| 国产色欲AV一区| 国产91探花精品一区二区| 国产一级理论片| 91丝袜兔女郎 羞羞软件| 午夜寂寞丝袜久久| 俄罗斯12一14eenxxxxtv小便| 热久久免费频精品18| 偷拍亚洲欧洲综合| 又色又爽又黄的三级视频在线 | 欧美亚洲日韩在线娱乐论坛| 黑人一区二区三区君岛美绪| 亚洲综合无码人成在线| 青草久久久久国产精品色吧 | 毛片在线观看成年人| 久久99国产精品二级毛片| a级特黄速播影院毛片| 妻子初次接受三人行小说| 亚洲日韩五月综合| 成人免费网站无打码| 国产在线观看一区二区三区精品| 网红国产日韩欧美在线| 91色噜噜狠狠色| 色欲一区二区三区精品A片| 天堂 av 在线 女人| 精品久久一级毛片| 校园亚洲春色另类小说合集| 日韩黄色精品网站| 久久久久亞洲精品男人的天堂| 国产yw88免费观看网站| 男人叉女人爽爽爽视频管网| 欧洲成人一区网站| 免费看av大片性爱av| 欧美亚精品一区二区三区在线| r级无码视频在线观看| 人妻无码一区二区三区| 无码成人AA片一区二区| 女教师高潮抽搐潮喷视频| 观看亚洲免费黄片| 欧美 国产 综合| 天天看片永久免费AV下载app| 精品国产综合区久久| 精品一区二区三区无码密臀毛片| 一区二区三区中文心得| 一下子就弄进去了岳| 国产A级毛片久久久久久小说| 无码日本精品一区二区片 | 亚洲Aⅴ无码电影在线播放| 青青综合视频在线| 国产伦精品一区二区三免费视频| 日韩美女裸交视频| 综合欧美国产日本一区| 日本无码少妇内谢视频| 欧美成人一区在线| 日本不无在线一区二区三区视频| 日韩黃色A片一区二三区| 惠民福利亚洲av激情无码专区在线播放| 国产精品精品视频一区二区| 中文精品日韩欧美在线播放 | 久久久久99精品成人片直播| 国产一级理论片| 亚洲福利国产精品韩日在线| 免费看Ap片久久久久久久久久久 | 国产一级 片内射久久| 黑人巨大精品欧美黑寡妇AV免费| 白浆喷水系列一区二区 | 日产精品久久久久久久| 五级黄高潮片90分钟免费视频| 久久久久久久久精品免费| 亚洲欧美日韩在线观看成人| 日韩成人无码影院| 91短视频在线观看直播| 国产在线xxxx五月综合一区二区 | 中文字幕精品亚洲字幕日韩| 久久国产视频一区| 国产日韩欧美综合一区二区三区| 麻豆成人APP下载| 草莓视频在线无限观看| 欧美精品日韩国产一区二区一区| 久久久亚洲男人的天堂一区二区三区| 成人五月激情在线视频| 处一女一级a一片| 日韩欧美亚洲妖精视频一区二区| 456性欧美在钱视频| 尤物亚洲A v无码精品色午夜| 99国产精品久久久| 国产A级毛片久久久久久小说| 美女爽到高潮国产| 影音先锋每日欧美资源站| 久久国产精品尤物网站| 色偷偷亚洲第一综合| 饥饿91富婆少妇推油按摩 | 国产女人作爱视频| 欧美日韩丝袜人妻| 国产视频一卡二卡在线播放| 白丝校花 扒腿自慰app| 色综合香蕉網| 精品人妻无码一区二区三区下载| 国产乱人伦偷精品视频免费| 亚洲国产成人精品女人久久久国产suv精品一区二区 | 精品动漫在线观看一区二区三区| 欧美人牲交ā欧美精区日韩| 欧美日韩一区二区另类视频| 日本熟女精品一区二区三区| 国产?级毛片久久久精品毛片 | 成人黄色大全| 久久精品这里精品6| av在线网站无码不卡| 美女毛片久久精品| 肉乳床欢无码a片免费看网站下载| 精品无码素人国产福利| 国产欧美日韩综合另类| 在线观看精品一级片| 久久中文影视少妇| 国产亚洲亚洲高清图| 日韩专区中文字幕aa一级毛片| 亚洲午夜无码视v毛片久久 | 国语对白熟女硬了| 在线观看成人一区二区| 91麻豆精品秘密入口| 无码精品一区二区无码| 亚洲A V无码A V制服丝袜在线| 欧美性在线视频| 国产成人综合欧美日韩| 中文字幕ⅴ亚洲日本在线电影| 亚洲色欲综合WWw| 国产精品无码免费网站| 国家AAA的一级看片| 中午日产幕无线码8区| 无码日本精品一区二区片 | 100部无码刺激性A片| 成人午夜免费网站| 精品国产亚洲av午夜网站| 麻豆一区精品二区人妻三区亚洲人妻 | 老熟女多次高潮视频在线观看| 久久久久99精品成人片直播| 亚洲第十页内插av| 日韩欧美视频一区aaa播放| 伊人无码在饯一区二区三区| 中文在线а√在线8| 91华人熟女免费观看| 国产伦精品一区二区三免费视频| 国产高清综合色另类视频| 日本高清在线www3344| 我和岳妇做爰1一5高玉梅视频| 国产视频一卡二卡在线播放| 亚洲?V无码?V制服另类专区| 国产成人精品一区二区不卡图片| 午夜小电影AV免费观看| 欧美日韩中字国产| 亚洲欧美日韩香蕉在线在线观看 | 韩国电影r级巜干柴烈火之吻| 国产ⅩXXX推油按摩BBBB | 天天看永久网站视频大全免费| 超碰97在线观看免费精品| 青春草成人在线视频| 精品国产成人| 国产女人18毛片水真多18| 狼色精品人妻在线视频下载| 国产一级黄片av免费看| 亚洲妇女内射精国产| 97在线无码免费人妻视频| 麻豆国产亚洲精品视频最新| 国产精品国产名人在线| 欧美日韩大片在线观看视频网站| 天天免费看片| 影音先锋成人资源| 激情五月天操女人| 女教师高潮抽搐潮喷视频| 亚洲午夜精品一线| 福利进入入口成人在线免费| 国产成人精品2021涩涩屋| 欧美日韩手机在线看片| 国产亚洲制服日韩中文在线| 国模冰冰大胆张开双腿| 中文人妻無碼一區二區三區在線| 亚洲午夜福利无码久久久久| 中日少妇精品一区| 亚洲优物视频国产AAA片| 国产又黄又湿无遮挡在线观看| 国产情侣av高清片| 欧美成人不卡手机视| 国产可乐视频在线视频欧美| 亚洲 中文字幕 日产| 99久久无色中文字幕| 91超碰一区二区三区| 最近免费2019中文字幕大全| 亚洲女优中文字幕| 亚洲第一精品911青草衣衣| 国产高清无码激情视频| 五月亚洲一区二区| 精品男人的天堂污污网站| 无码成人AA片一区二区| 欧美手机在线黄片| 一级a做片免久久费观看| 欧美一级一片视频| 久久久久亞洲精品男人的天堂| 在线丨暗哟小u女精品视频| 九九九国产精品免费观看| 黄色无码视频又粗又长| 日韩欧美中文字幕乱码在线| 午夜在线精品不卡国产| 艳鉧动漫1~6完整版H| 999国内精品视频免费| 国产羞羞网站| 91超碰一区二区三区| 午夜老司机福利在线视频| 欧美人与物videos另| 精品一区二区三区不卡蜜臂| 中国免费a级毛片| 欧美zozozo人禽交| 国产精品一级AAAA在线看| 性开放国产精油按摩Av片| 激情五月天操女人| 邻居男友cao我1v1高h文| 日韩欧美一区二区三区视频在线 | 中文字幕性爱在线观看视频| 成人久久精品激情国产| 亚洲av片不卡无码久久欣赏网| 国产精品激情免费| 日本熟女精品一区二区三区| 久久av喷潮久久av高| 免费能直接看黄的网站小说| 2020狠狠狠狠久久免費觀看| 在线观看你懂的网站| 饥饿91富婆少妇推油按摩 | 日韩精品青青视频在线播放| 中文字幕在线播放无码| 最近中文字幕MV最新更新时间 | 日本最新伦中文字幕久久熟妇视频| 免费人成影视在线网战| 亚洲欧美日韩视频小说| 欧美日韩精品一区二区三区在线| (愛妃精選)在线观看国产成人av天堂 | av无码岛国免费动作片蜜桃| 欧美性开放久久精品| 亚洲女优中文字幕| 欧美大片以及精品美模顾欣欣无圣光| 直接看的成人无码视频网站| 激情亚洲欧美日韩| 欧美性在线视频| 91精品少妇高潮一区二区三区不卡| 在亚洲线国产视频观看| 亚洲国产成人第一天堂| 日产电影一区二区三区| 久久久精品视大全| 青草久久久久国产精品色吧| 刺激视频免费一区在线观看| 亚州色区久久综合亚洲色一区二区三区| 成人日韩免费高清在线观看 | 丰满熟妇岳av无码区hd| 欧美亚洲日产小说图片综合| 日韩一卡二卡乱码新区| 激情久久久久久久久久久| 日韩欧美一级成人| 国产女人体一区二区三区国人馆| 色窝窝蝌蚪在线精品免费| 激情久爱免费视频在线| 韩日免费小视频| 国产在线你懂的av| 日韩在线视频精品高清| 欧美另类激情综合| 香蕉伊思人视频在线观看免费 | 77788色淫免费网站视频| 永久免费的黄页网站4188| 欧美日韩国产的黄片| 免费人成影视在线网战| 亚洲国产中文在线| 校园亚洲春色另类小说合集| 国产精品大全| 毛片毛片视频在线| 亚洲欧洲自拍| 日韩精品免费一区二区| 综合亚洲欧美日韩视频| 最好看的最新高清中文视频| 精品不卡毛片a在线| 国产精品精品自在线拍最新中文字幕免费mv | 久久国产精品乱子乱精品| 召唤魅魔竟是妈妈来了第一季| 久久综合网丁香五月| 国产人在线成免费视频观看| 亚洲AV无码国产精品午友情| 国产精品白浆无码流出免费看| 在线视频国产αⅴ| 亚洲国产欧洲在线播放| 又黄又粗又大又硬的免费视频| 91香蕉视频日本在线| 大量国产男女视频在线观看| 裸体肌肉男自慰Gay网站| 欧美淫秽激情五月天| 日本不卡一区二区在线视频观看| 亚洲国产精品外买| 精品国产一区二区三区AVl| 最新亚日韩白丝av无码免费| 337p日本欧洲亚洲大胆| 直接看的成人无码视频网站| 老司机午夜精品久久久久免费| 国产精品晓可耐在线观看| 色综合久久手机在线| 欧美一级特黄刺激爽大片| 欧美久久免费激情视频| 国语对白熟女硬了| 日日夜夜天天久久| av无码精品久久久久精品免费| 久久精品黄片免费看| 野外露出国产在线视频| 无码专区人妻系列制服丝袜| 午夜国产福利精品一区二区三区 | 老熟女hdxx中国老熟女| 一个人看的www高清在线观看| 疯狂做受ⅩⅩⅩⅩ高潮高清视频| 爱豆在线观看网址91| 最新91午夜福利在线| 免费看18级做a爰片久久| 亚洲欧美日韩在线观看成人| 国产黄页免费在线观看| 激情亚洲欧美日韩| 日本不卡一区二区在线视频观看| 国产精品jk在线观看| 国产情精品嫩草影院88av | 中文字幕在线人成视频欧美| 综合图色精品| 精品国产一区二区久久久毛片| 看全色黄大色黄大片女爽一黄 | 日日夜夜天天久久| 成人综合激情在线| 中文字幕精品久久一区二区三区| 日韩va中文字幕无码免费| 农村老肥熟口味重69ⅹⅹ| 在线播放欧美极品| 亚洲欧美日韩中文字幕一区二区| 99精品免费在线观看| 欧美日韩精品一区二区三区在线| 裸体老太老妇人SE×| 色色网站免费看| 老司机视频第二区| 草草影院人妻无码专区91| 97人妻人人添人人| 黄片手机在线观看| 免費看國產精品久久久久| 亚洲a∨无码国产精品夜色午夜| 亚洲AV无码国产精品午友情| 2020狠狠狠狠久久免費觀看| 日本人妻少妇一本之道| 亚洲欧美日韩久久精品mv| 日本亚洲欧美精品| 一下子就弄进去了岳| 国产精品无码无卡有毛在线播放 | 日本精品99久久久久| 国产国语对白无码视频在线观看| 亚洲av永久精品二区在线| 一级女人免费视频毛片| 丁香五月网正在中文字幕| 国产欧美日韩综合另类| 午夜视频在线观看国产18| 亚洲国产中文字幕一区| 人妻黑丝亚洲中文字幕观看| 国产精品久久久影院日本| 亚洲综合在线观看免费| 国产免费的一级av片| 色呦呦影视在线观看| 视频精品中文字幕一区二区| 欧美一级日韩一级| 野外露出国产在线视频| 侵犯女教师三上悠亚av中字 | 日本成人欧美激情在线| 亚洲国产精品ⅴ?在线播放 | 在线看AV一区中国av无码免费 | 黄色草莓视频网站| 男女啪啪免费体验区| 午夜短视频日韩免费| 亚洲福利国产精品韩日在线| 在线观看亚洲欧美日韩国产| 成熟少婦一區二區三區| 国产精品一区二区成毛片| 免费黄色网址国产麻豆三区| 日产一区二区综合99热精品成人| 99re5热在线视频播放| 國產一區二區三區在線電影| 一区三区精品在线观看 | 又黄又湿又高潮的免费网站| 日本免费高清欧美一区二区| 亚洲午夜福利理论片在线播放| 国产精品波霸一区二区| 中日韩一区二区三区免费观看| 久久精品无码天堂av好看到停不下来! | 全又大粗又黄又爽少妇片| 日韩美女福利精品一区| 国产ⅩXXX推油按摩BBBB | 国产亚洲精品生肉动漫资源网| 欧美在线A∨影院| 一区二区三区国产精品保安| 丁香花免费高清视频全集动漫| 手机在线视频网站| 欧美亚洲日本日韩国产综合色| 国日韩产超清无码片内射| 精品国产āv网站大全| 了解最新午夜99精品视频| 香港A级午夜毛片视频免费| 黄P免费视频在线观看| av无码岛国免费动作片蜜桃 | 久久亞洲免費視頻| 国产精品一区二区在线观看麻豆| 无码av高潮喷水无码专区| 亚洲国产综合专区在线观看播放| 羞羞漫画为成人而生| 激情亚洲专区日韩| 欧美精品中文在线| 国产+高清+无码+中文| 男女晚上做爽爽的视频无遮挡| 18p精品无码在线观看| 日韩顶级无码aa一区二区片| 国产乱人伦偷精品视频免费| 欧美深夜福利视频| 日本免费啪啪观看二区| 99久久精品一级毛片一区2区3区 | 在线丨暗哟小u女精品视频| 国产一级理论片| 日韩欧美亚洲妖精视频一区二区| 不卡的av手机在线| AV在线观看国产精品| 日韩黄片在线免费观看视频| 欧美一级片手机在线观看 | narutomanga玖辛奈之乳| 国产深夜福利在线观看| 亚欧综合无码一区二区三区| 国产日韩精品大片| 黄黄的高清无码网站| 亚州色区久久综合亚洲色一区二区三区| av超碰在线观看| 在线观看不卡片免费三级片| 西西人体444www大胆无码视频| ⅴa亚洲v天堂a亚洲色无码专区| 国模冰冰大胆张开双腿| 免费看18级做a爰片久久| 国产 精品 一区不卡| 欧美熟女一区| 丰满女人波霸视二区| 18p精品无码在线观看| 欧洲亚洲欧美国产日本精品| 欧美乱偷一区二区三区在线| 日韩欧美一级成人| 午夜精品夜生活成人无码| 糖心vlog下载地址日韩精品中文字幕日日骚 | 超碰在线无码97| 女人自慰www免费看| 午夜日韩欧美一级| 亚洲是亚洲手机看黄片| 欧美精品黑人粗大欧| 丁香激情久久久久伊人精品| 日韩欧美永久在线| 热99国产精品这有里视频| 香港经典aa毛片免费观看变态| 欧美色欧美亚州另类二区 | 国产美女主播一区二区| 看全色黄大色黄大片女爽一黄 | 国产一国产一级毛片视| 亚洲第一精品911青草衣衣| 国日韩产超清无码片内射| 亚洲一区精品动态图| 欧美日韩精品一区二区三区激情| 91中文字幕在线视频| 性饥渴少妇列运动视频| 亚洲成人影院麻豆| 强行破瓜稚嫩粗暴顶弄哭喊| 快播看片毛网站| 欧美在线不卡激情二区| 麻豆系列a区二a区| 欧美一级黄色录相| 无码自拍亚洲国产| 成人久久精品激情国产| 羞羞漫画为成人而生| 韩无码国产精品日韩精品| 亚洲日本国产成人在线视频| 国产精国产中文制服丝袜另类| 任你干草精品视频不卡| 开心youwu亚洲五月丁香五月| 2022久久免费精品国产72精品| 国产高清在线91| 浪货把腿张开嗯让你爽| 国产精品萌白酱永久在线| 97久久综合精品久久久| 18无日本十八禁无遮无挡| 中文字幕无码精选另类图片| 午夜精品影视| 狼人色国产在线视频麻豆| 欧美制服丝袜亚洲日韩另类在线| 国产在线你懂的av| 蜜桃成熟时黄色免费网站安全| 啪啪网站免费看| 思思久久99国产精品久久中文| 97中文字幕无码免费久久| 日本美国免费观看三级片| 天天爽天天爽夜夜爽| 免费观看日本XXXXX视频高潮| 三级欧美日韩在线| 少妇影视自拍日本| av超碰在线观看| 青青综合视频在线| 日本aaa一级特黄大片| 欧美日韩国产一区二区国产高清看片| 国产清纯白嫩初高生在线播放性色| 亚洲成年轻人天堂久久| 亚欧免费无码AV蜜桃AAV久久 | 无码精品人妻免费| 国产成人精品曰本亚洲专区| 亚洲日本精品99这里都是精品这里有精品 | 尤物亚洲A v无码精品色午夜| 国产小男生约熟女视频 | 日本人妻少妇一本之道| 亚洲αv大精免费在线观看| 日韩人妻无码影片| 久久精品成人免费观看三| 亚洲人成网站色7799| 在线免费观看污片| 日韩欧美综合一二三区| 极品色欧美三区四区| 北条麻妃肉丝袜办公室| 99热99re6国产在线播放| 97精品国产一二区| 伊人久久综合精品无码AV专区国产AV成人精品播放 | 国产精品一区二区乱岳电影| 肉乳床欢无码a片免费看网站下载| 天天躁日日躁狠狠躁一级网站 | 久久久久久中文字幕无码| 国产免费高清av| av无码岛国免费动作片蜜桃| 最好看的中文字幕国语2024| 亚欧成人无码AⅤ在线播放| 一区二区三区国产精品uuuu| 老子影院午夜伦手机在线| 国产永久免费AV在线观看| 国产第66页在线观看| 毛片AA级毛片区| 又粗又大又长又硬又爽的少妇毛片| 国内精国精品国产一级毛片久久性色| 性饥渴少妇列运动视频| av88中文字幕在线观看| 色综合天天综合网国产国产人| 无码专区人妻系列制服丝袜| 亚洲欧美日韩国产资源在线观看| 国家AAA的一级看片| 欧美成人免费高清在线观看| 亚洲日韩激情中文字幕| 亚洲?V无码?V制服另类专区| 国产免费高清av| 广州老熟女一88AV| 日本色网片在线播放| 精品国产一区二区aV麻豆| 亚洲国产精品久久久久免费| 日本aaaaa级无码av毛片| 国产诱惑免费在线观看| 国产高清综合色另类视频| 思思久久96热在精品国产精品| 国产亚洲精品免费在线观看| 一级精品偷拍| 一夲道香蕉亚洲| 精品国产精品一区二区手机在线观看| 欧美日韩精品一区二区三区激情| 天天免费看片| 免费国产一区二区在免费| 惠民福利亚洲av激情无码专区在线播放| 久久婷婷综合精品| 蜜桃一区二区免费视频观看| 黑料不打烊隐藏入口GITHUB | 国产片成人在线观看| 裸体歌舞一区二区三区| 强行破瓜稚嫩粗暴顶弄哭喊| 亚洲av日韩av污污在线| 国产免费天天看高清影视线| 2020狠狠狠狠久久免費觀看| 一级毛品视频操逼视频| 中文字幕久久一区二区| 成人性色生活片免费看爆迷你毛片 | 高清国产精品自在久久| 黄色成人播放免费| 全免费a级真人片免费看| 国产三级不卡一区不卡二区在线| 乱伦综合高清免费| 久久久久久中文字幕无码| 国产精品激情免费| 日韩 中文字幕 欧美专区| 手机在线亚洲| 91香蕉视频污视频| 欧美黑人白人成人h在线观看| 暴力H精品推荐自拍| 欧美成人一区视频| 久久久久国产精品一级片| 亚洲国产精品无码久久电影| 欧美黄色A激情免费观看| 东北露脸46熟妇ⅩⅩXX| 2020一本久道在线线观看| 欧美日本三级片99| 国产日产欧美欧韩在线| 免费黄色网址国产麻豆三区| 欧美精品一区二区三区不卡视频| 黄色在线观看网站中文字幕综合久久久久| 日本aaaaa级无码av毛片| 免费看Ap片久久久久久久久久久 | 欧美一区二区啊啊啊啊| 一卡二卡三卡四卡国产在线| 欧美日韩色片| 扒开老师的粉嫩泬10p| 亚洲精品一二三四区在线观看| 爆出白浆超碰人人人人| 亚洲成av大片大片在线播放| 国产亚洲精品午夜国产福利| 羞羞漫画为成人而生| 极品美女一区二区三区TV| 日本欧美一区二区三区就| 91免费黄色无删减在线| 国产成人久久精品一区二区三区欧美| 国产精品色欲AV| 97久久精品久久久水蜜桃| 日韩欧美国产资源| 日韩不卡无码一区二区三区 | 欧洲色图亚洲无码| 夜夜爱夜夜爽夜夜高潮| a级黄色 一区二区| 九九热这里只有国产精品视频| 国产精品嫩草影视免费观看| free性欧美hree性欧美| 亚洲无线天堂无码| 亚洲αv大精免费在线观看| 欧美日韩人妻少妇精品专区性色| 日韩无码视频免费看| 日本不无在线一区二区三区视频| 97碰免费视频播放| 欧美成人午夜在线影院| 亚洲中文字幕素人在线| 国产成人福利在线| 国产亚洲成?V人片在线观看 | 亚洲妇女内射精国产| 中日韩精品免费一区二区| 国产制服欧美亚洲一区| 一本久久久精品国产精品| 一键去除衣的网址| 国产欧美性爱视频在线| 中文字幕无码专区日韩精品| 日产精品久久久久久久| 毛茸茸老妇女bbwββwbbwbb| 亚洲美女久久久久99| 精品自拍偷拍视频| 欧美成人精品| 亚洲综合无码人成在线| 草莓视频在线无限观看| 国97视频在线观看免费| 精品一区二区三区Av麻| 91无码人妻一区二区三区| 黄色毛片在线免费| 在线观看不卡片免费三级片| 午夜福利一区二区在线观看 | 日韩在线视频精品高清| 日韩欧美动漫在线视频| 欧美亚精品一区二区三区在线 | 中国美女牲交视频| 亚洲国产成人第一天堂| 久久午夜夜伦鲁鲁片免费无码美剧| 久久产精品一区二区三区污欧美| 开心youwu亚洲五月丁香五月| 久久精品成人免费观看三| 免费无遮挡视频视频| 久久伊人热热精品中文| 亚洲色欲综合WWw| 久草影音麻豆国产av| 日韩专区亚洲精品欧美专区| 99re5热在线视频播放| 欧美成人免费在线视频观看| 国产刺激高潮免费软件| 精品国产成人悦久久| 久久性欧美精品| 久久久久久免费精品推荐| 日韩人妻无码影片| 久久亞洲免費視頻| 国产又黄又长又大| 国产三级不卡一区不卡二区在线 | 日日添夜夜添夜夜添欧美| 亚洲特级毛片无码专区| 国产人国产精品视频69| 日韩欧美视频在线观看网址| 七七电影天堂| 一级欧美aa黄片| 亚洲精品码av在线| 福利国产在线观看| 综合亚洲另类欧美久久成人精品| 影音先锋在线亚洲精品推荐| 三级黄色国产视频| 非洲人与性动交ccoo| 中文字幕日本特黄aa毛片| 91精品一区二区在线观看| 激情欧美一区二区三区偷拍| 精品久久久久久无码专区小说| 亚洲国产成人精品女人久久久国产suv精品一区二区 | 动漫国产精品一区二区三区啊啊| 精品视频在线免费看| 亚洲少妇性爱视频| 邻居男友cao我1v1高h文| 久久久久中文字幕精品视频| 亚洲熟少妇在线播放999| 99视频在线精品国自产拍免费观看| 国产午夜激无码av毛片不卡香港| 亚洲日本欧美一区二区三区| 激情综合久久| 免费视频在线观看一区| 国产精品久久久久久月婷| 网友分享国产欧美日本不卡心得| 无码少妇一级AV片在线观看| 国产精品传媒99一区二区| 最新亚洲精品国产理论电影| 免费人成影视在线网战| 男人猛操女人免费看| 国产亚洲精品剧情| 久久这里只精品国产re加勒比| 毛片网站视频免费| 亚洲综合图片色婷婷另类小说 | 久久无码精品无码洲日韩麻豆| 精品国产亚洲av午夜网站| 日韩国产传媒在线视频| 欧美日韩人妻少妇精品专区性色| 2016手机看欧美日韩一本到| 911久久人人超碰超碰窝窝| 色姣姣狠狠撩综合网| 亚洲精品国产一区二区色欲影院| 奇米影色777四色在线二区| 男人的鸡鸡插女人的鸡鸡| 成年人在线免费视频播放| 国产Ⅴ片在线播放免费无码| 中国女人爱做性视频| 天干夜天天夜天干天2019| 欧美亚洲日韩 国内自拍| 欧美一级特黄刺激爽大片| 老熟女多次高潮视频在线观看| 日韩精品免费一区二区| 成熟少婦一區二區三區| 日本一区一本中文字幕| 少妇口述3p喷水经历| 综合日本久久久久| 在线亚洲欧美专区高清| 男人j进女人p高清播放| 亚洲国产婷婷在线观看| 天仙TV萌白酱女仆喷水视频| 久99频这里只精品23热视频| 亚洲国产精品ⅴ?在线播放| 深夜精品福利日韩| 91香蕉视频污视频| 国产高清在线观看视频在线| 日本丰满熟妇乄╳高潮| 亚洲A级在线视频| 欧美黄色A激情免费观看| 成年女人视频在线观看15| 亚洲精品国产网红在线观看| 人妻少妇精品中文字幕A V蜜桃| 国产无码在线视频制服丝袜 | 久久亚洲中国孰女仑乱| 无码成人AA片一区二区| 亚洲妇女内射精国产| 亚洲欧美日韩在线观看成人| 日本高清一二三区| 日韩欧美综合一二三区| 97国产在线观看免费视频播放| 偷拍亚洲欧洲综合| 欧美另类激情综合| 日产电影一区二区三区| 香港A级午夜毛片视频免费| 榴莲视频免费观看在线| 国产伦精品一区二区三免费视频| 香蕉视频成人免费看| 亚洲国产成人精品女人久久久国产suv精品一区二区 | 欧美大片以及精品美模顾欣欣无圣光| 好多水好硬好紧好爽视频| ゆきえ52美熟女に大量中出し | 人妻无码一区二区三区| 国产一区二区久久婷婷| 午夜精品影视| 在线一区二区美欧视频| 久久五月激情综合无码| 免费午夜av电影| 精品久草国产在线观看| 97色多多在线精品视频| 久久亚洲国产伦理| 久久精品熟女亚洲AV18禁| 两个人免费观看日本的| 亚州AV秘 一区二区三区 | 久久一本精品久久精无码精品a∨| 校花高潮抽搐冒白漿| 国产日韩三级| 国产一国产一级毛片视| aⅴ三级综合在线观看| 人妻无码一区二区三区| 一本一道av无码中文字幕不卡| 国产麻豆媒一区一区二区三区| 国产免费无码?v片在线观看不卡| 亚洲国产精品久久久久免费| 日韩黄片在线免费观看视频| 榴莲榴莲榴莲网站| 暴躁老女人免费视频| 亚洲一二三四不卡| 无码专区人妻系列制服丝袜| 国产精品欧美亚洲大片在线观看| 免费在线视频一级不卡| 男阳茎进女阳道全过程在线观看 | 2021日日拍夜夜爽人5兽视频| 天堂va欧美va亚洲v| 色五月亚洲综合伊人久久| 蜜桃日本mv免费观看| 国产人国产精品视频69| 最新1024狼友在线| 蜜臀色欲国产精品无码| 亚洲国产精品外买| 一本一道av无码中文字幕不卡| 18+在线观看网站| 国产免费a级在线观看| 欧美亚洲国产视| 午夜老司机福利在线视频| 午夜理论日本乱人伦片中文| 亚洲福利在线观看一区二区| 国产va精品免费观看剧情介绍 | 七七电影天堂| 国产电影一卡二卡三卡四卡| 欧美一级黄色录相| 激情午夜福利| 制服中文字人妻中字中出| 青青综合视频在线| 少妇凸轮内射高清视频| 丝袜老师综合网亚洲| 草莓视频在线无限观看| 免费无码成人αV片在线在线播放| 日本免费不卡v一区二区在线| 思思热99re热在线视频| 日本成人一区二区在线观看| 午夜精品欧美日韩| 国产乱肥老妇精品一区二区| 亚洲欧美日韩中文字幕一区二区| 最近最新中文字幕大全免费1| 免费aaa片在线观看| 亚洲无码二区三区粗大视频 | 欧美丰满性久久久久久久| 色综合色综合色综合网站视频| 国产成了人午夜福利| 欧美久久伊人| 日本高清视频在线免费观看| 日本免费啪啪观看二区| 高清一区日韩亚洲欧美| 自拍一区视频| 国产免费高清av| 国产色播老熟妇肥大Ⅹxxwww| 67194成l人在线观看线路| 七七电影天堂| 中文字幕在线观看第5页| 国产午夜免费一区二区三区| 三级日本欧美亚洲| 国产精品福利一区二区| 成人网在线观看一区| 久久国产热口爆视频免费| 亚洲A v成人无码久久精品超碰| 亚洲国产精品电影人久久网站| 亚洲欧美综合另类中字| 国产麻豆精品精东影业A v网站| 亚洲国产欧美日韩成人影视电影| 午夜视频在线观看国产片不卡| 午夜免费观看黄片| 成人永久福利在线观看| 精产国品一二三产区区别| 无码电影之家| 久久只精品99品6免费久| 无码人妻一区二区三区免爱妃视频 | 欧美夜夜高潮夜夜爽va| 最新中文字幕av无码专区1| 亚洲乱码日产精品M| 国产高清在线观看视频在线| 色资源在线视频在线| 日韩欧美三级毛片免费网| 97国产在线观看免费视频播放| 大陆成人自拍视频| 惠民福利日韩欧国产精品一区综合无码| 国产欧美性爱视频在线| 欧美日韩中文字幕日韩欧美一区二区| 精品久久一级毛片| 免费免费啪视频视频观看| 五级黄高潮片90分钟免费视频| 國內成人免費視頻| 久久国产欧美日产精色大师| 99久久99这里只有精品| 亚洲AV无码日韩AV中文| 欧美日韩精品1卡2卡三卡| 日本免费一级一区二区三区| 一级毛品视频操逼视频| 性欧美丰满顶级毛茸茸| 久久综合国产精品二区| 国产对白熟女受不了了| 亚洲精品男女视频在线观看| 视频精品中文字幕一区二区| 超碰97 国产在线| 国产无精乱码一区二区三区| 老司机午夜精品久久久久免费| 午夜电影成人日韩在线观看| 邻居男友cao我1v1高h文| 欧美在线A∨影院| 日韩视频在线观看中文| 日本免费一级一区二区三区| 456性欧美在钱视频| 国产va免费精品观看精品美女| 看一级高清免费视频完整版的| 人禽伦免费交视频播放| 亚洲特级毛片无码专区| 国产精品无码另类| 久久综合国产精品二区| 国产午夜aⅤ秒播在线观看| 国产精品毛片app| 91亚洲精品视频| 国产激情一区不卡一区在线| 广州老熟女一88AV| 日本欧美中文| 久久久久五月婷婷| 99热国产网红主播在线| 午夜免费观看黄片| 天天搞天天上天天日| 四虎免费影院com| 高清一区日韩亚洲欧美| 特级无码a级毛片特黄| 人妻中文字幕91| baoyu在线观看视频播放视频| 国产亚洲综合一区二区三区观看视频| 亚洲中文字幕国语| 精产国品一二三产区区别| 久久久97一区蜜臀国产日产精品| 色天使久久综合给合久久97色| 91麻豆精品秘密入口| 国产mm1314无码视频在线观看| 成·人免费无码视频在线观看| 亚欧无码vs在线观看| 国产无码网页在线观看| 欧美日韩精品处破系列| 久久成年人五级片黄色免费网站| 亚洲AV成人韩国爆乳| 日韩亚洲一区二区三区av片| 在线āv视频国产免费网站| 日本电影一区二区5566| 99久久精品只有免费国产| 天天免费看片| H福利在线观看网站| 免费黄色毛片一级视频| 亚洲日本国产成人在线视频| 国产?级毛片久久久精品毛片 | 91免费在线播放| 天天摸天天摸色综合舒服网| 亞洲福利視頻一區| 国产午夜福利片在线观看免费| 欧美精品一区二区三区不卡视频| 欧美爱爱网站| 欧美亚洲经典有声录音精品| 久久久亚洲男人的天堂一区二区三区 | 蜜臀色欲无码人妻精品| 亚洲国产成人精品无码一区二区三区 | 七七电影天堂| 老熟女hdxx中国老熟女| 亚洲天堂老女人一区二区| 久久中文影视少妇| 一区二区三区精品无码| 色欧美色欧色欧美一区二区| 色综合香蕉網| 91麻豆精品秘密入口| 宝贝对着摄像头自己做忘羡| 天天日夜夜回| 五月婷婷丁香亚洲欧美| 国产精品色欲AV| 高清无码在线观看AV日韩欧美视频在线| 亚洲国产香蕉久久精品| 在线丨暗哟小u女精品视频| 男人叉女人爽爽爽视频管网| 亚洲女优中文字幕| 有码中文av无码中文av| 亚洲国产毛片一区二区三四区| 在线电影三级乱码高清在线观看| 亚洲综合自拍一区中文字幕| 精品国产91自在自线@老污龟| 国产免费的一级av片| 美丽人妻中出中文字幕无码| 欧美黄色A激情免费观看| 久久亚洲综合网| 我和岳妇做爰1一5高玉梅视频| 亚洲日韩五月综合| 五月综合久久不能| 亚洲一级成年人免费在线毛片| 欧美一级一片视频| 亚洲熟女一区二区精品成人| 免费看老外操B视频| 成在线人免费无码高潮喷水| 天天av专区在线观看| 四虎影免看黄美女日逼AV| 24小时最新网址| 亚洲国产精品外买| 蜜臀色欲国产精品无码| av88中文字幕在线观看| 日韩片欧美片另类| 歐美一區二區三區在線觀看不卡| 日韩欧美亚洲中文乱码在线观看 | 蜜臀色欲无码人妻精品| 男同专区一区二区三区| 亚洲欧洲日本视频在线| 亚洲国产精品无码久久电影| 成品网站w灬源app免费百度| 国产无码在线视频制服丝袜| 日韩亚洲中文欧美| 国产精品国一国二国三区| 亚洲一级成年人免费在线毛片| 国产精品无码无卡有毛在线播放 | 中国美女一级作爱片免费| 超清欧美高潮喷水在线观看| 少妇作爱三级a片免费看| 欧美日韩人妻少妇精品专区性色| 日韩爱爱精品一区二区三区| 成人亚洲国产综合精品| 日韩欧美高清国产视频| 成在线人免费无码高潮喷水| 日本无码少妇内谢视频| 思思久久99国产精品久久中文| 免费特级黄毛片在线成人观看 | 精品久久久久亚洲精品| 国产动漫一区二区免费69| 久久国产午夜av| 欧美人与物videos另| 亚洲精品污污网站在线播放| 成人精品一区二区三区视频播放| 亚洲美女久久| 日韩免费一区二区三区视频在线播放| 少妇被下春药玩弄a片| 看全色黄大色黄大片女爽一黄 | 中文人妻無碼一區二區三區在線| 亚洲日韩精品a片无码麻豆| 欧洲色图亚洲无码| 偷自拍日韩精品蜜月| 一级欧美aa黄片| 国产美女被躁喷水视频| 欧美淫秽激情五月天| 免费精品国偷自产在线洗澡| 亚洲Av成人五月天在线观看| 爱豆在线观看网址91| 在线加勒比最新国产国产| 国产在线91精品麻豆| 娇小12一13sexvideos高潮| 一级特黄录像免费播放 视频| 国产成a人亚洲精V品无码久久| 午夜福利一区二区在线观看 | 网友分享国产精品九九播放心得 | 抽插黄文NP合欢宗| 日本成人欧美激情在线| 免费观看动漫美女被靠网站| 國內成人免費視頻| 91精品国产综合久久精品756| 国产av丝袜熟女一区| 久久精品高清三级伊人69| jsk教え子が教室游戏| 激情久久av一区av二区av| 草草影院人妻无码专区91| 亚洲人成午夜福利在线观看| 亚洲A∨午夜精品一区二区三区| 你懂的国产电影在线观看| 成人亚洲无码观看日韩涩涩高清| 黄色一级毛片在线看| 日韩欧美高清国产视频| 九九热这里只有国产精品视频 | 日日操天天久久99热只有频精品| 亚洲v日韩v欧美| 欧美性爱一我在线级| 中日韩一区二区三区免费观看| 免费观看日本XXXXX视频高潮| 日韩精品成人av高清在线观看| 国产美女91精品在线观看| 久久99黄毛大片| 久久五月激情综合无码| 免费aaa片在线观看| 亚洲国产日韩在线观看网站| 免费国产成人作爱视频| 亞洲人成電影網站久久影視| 91超碰一区二区三区| 中国一级特黄真人片久久| 欧美日韩国产的黄片| 艳鉧动漫1~6完整版H| 国产精品传媒99一区二区| 爱丫爱丫影院电视剧在线观看| 成人精品一区二区三区视频播放| avtt手机在线观看| 2020国产精品视频免费| 亚洲老女人精品老妇女| 国产原创自拍不卡第一页| 最近精品国产三级a∨在线| 黑料不打烊隐藏入口GITHUB | 久久精品亚洲国产视频| 日本熟女精品一区二区三区| 高清一级全黄毛片| 日本免费激情视频| 国 产亚洲 无 码av| 狼色精品人妻在线视频下载| 免费在线看成人毛片| 欧美一级特黄刺激爽大片| 永久免费的黄页网站4188| 国产日韩欧美一区二区三区久久毛多色婷婷 | 国产情精品嫩草影院88av | 国产欧美性爱视频在线| 好爽毛片一区二区三区四大小便| 特级丰满少妇一级AAAA爱毛片av| 中文高清无码后入| 久久久久国产av性色| 无码成人精品区在线观看| 韩宝贝18仙女屋Tv| 乐乐的jianying日记阅读| 亚洲少妇性爱视频| 东京热无码一区二区AV| 午夜短视频日韩免费| 欧美精品蜜桃一区二区三区| 亚洲国产精品外买| 欧美日韩国产高清| 婷婷激情丁香| 4438全国色惰免费网站| 精品国产av无码| 好久久免费视频高清| 国产美女主播一区二区| 日本免费一级一区二区三区| 影音先锋成人资源| 国产又黄又长又大| 夜夜爱夜夜爽夜夜高潮| 色妞网综合在线播放| 久久伊人久久大香线蕉一区| 欧美日韩精品处破系列| 久久国产精品激情| 香蕉视频成人免费看| 国产电影一卡二卡三卡四卡| 日韩一区欧美在线精品| 一二三区在线播放国内精品自产拍| 精品无码精品三区| 亚州色区久久综合亚洲色一区二区三区| 国产高清综合色另类视频| 日本xxxx18视频在线观看| 99国产精品国产精品| 午夜短视频日韩免费| 欧美一级亚洲日韩一级| 五月天激情四射网| 国产免费高清av| 国产乱一区二区三区视频| 国产免看一级a一片成人av| 精品自拍偷拍视频| 日韩欧美在线免费观看视频| 中文精品日韩欧美在线播放 | 日韩欧美一区二区三区视频在线 | 日本美国免费观看三级片| 中文字幕無碼亂倫系列| 激情欧美一区二区久久剧场| 性巴克一键去除衣物| 亚洲卡一卡2卡3卡4精品| 不卡的av手机在线| 欧美精18videosex性欧美 | 深夜大秀直播APP| 久久婷婷五月麻豆国产| 亚洲精品系列国产综合| 一二三区在线播放国内精品自产拍| freexx欧美性黑人极品hd| 欧美亚洲另类自拍欧美| 国产一级特黄全黄真人片| 亚洲国产成人久久综合视色| 97se网在线看视频69| 婷婷五月日韩?V永久免费| 嫩草影院未满十八岁禁止入内 | 国产成人久久婷婷精品流白浆 | 91日韩电影成人| 一级a看片在线观看| 午夜无码专区免费看片| 日韩中文字幕在线看 | 日本高清一二三区| 欧美日韩中字| 99久久精品一级毛片一区2区3区| 最新91午夜福利在线| 久久久久国产av性色| 西西人体44www大胆高清| 床戏AⅤ免费jizz美女| 日韩欧美在线导航亚洲都市| 国产剧情在线精品视频不卡| 色婷婷激情在线一区二区三区| 黄频在线免费观看一区二区| 日韩欧美美女啪啪视频| 激情欧美综合五月天| 韩国漫画免费在线观看网站| 无码无遮挡又大又爽又黄的视频| 中文字幕日本特黄aa毛片|