亚洲国产aⅴ综合网一区_一本大道香蕉大道在日韩_黄片无码自慰在线看_国产精品视频九九_97超碰免费观看黄色片_免费一级特黄特色大片_欧式一级高清电影在线观看_国产三级在线网站_国产成人精品日本欧美动漫_免费视频播放一区二区无码

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業(yè)資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

99国产精品免费调教| 久久久亚洲欧美精品导航| 中文字幕无码日韩aⅴ| 亚欧洲免费在线观看视频| 国产做爰又粗又大又爽| 91tv成人精品人妻91资源| 日本欧美高清在线观看| 先锋影音超碰在线| 短篇肉耽(h)男男| 少妇av中文字幕| 亚洲国产精品丝袜国自产拍av| 无码任你躁久久久久久久剧情| 亚洲一、二、三级片| 国产极品白嫩精品无码视频| 国产熟女凹凸视频| 国产69精品久久久久孕妇| 国产专区手机在线视频| 国产成人精品日本亚洲77美色| 先锋77xfplay色资源网站| 日韩剧场人妻中文字幕| 2019nv天堂网一日本免费一区 | 性爱视频一区二区三区| 精品人妻无码一区二区三区下一| 无码蓝光电影大全爱情片在线观看免费完整版 | 国产成人精品月日本亚洲语音| 亚洲综合国产欧美| 国产成人av高清免费观看在线 | 用各种异物把她C到高潮的小说| 中文字幕AV毛片在线观看| 轻点灬大JI巴太粗太长了A片| 久久中文字幕不卡高清| 六月婷婷网视频在线观看| 蜜桃AV无码理论片在线观看| 日韩综合一级播放网站| 精品日韩在线视频一区二区| 国产黄色片在线观看视频| 国产做A爰片毛片A片美国| 欧美精品午夜久久久久久| 丁香激情五月| 国产初高中小泬视频| 毛片手机在线视频免费观看| 日本高清www午色夜黄| 久久成人免费毛片高清观看| 影音先锋最新看片网址!| 欧美激情在线观看手机视频| 久久高清精品久久| 国产亚洲婷婷香蕉久久精品不卡| 青青热久免费精品视频精品| 亚洲日韩在线在线播放视频在线| 亚洲?ⅴ综合色区无码一区| 久热这里只有精品201| 国产黄色在线看| 久久久久久国产精毛片 | 杨门女将肉艳史k8播放| 国产精选之刘婷野战| 亚洲乱色一区二区三区| 国产女人乱子对白av片| 免费人成观看在线网| 欧美 日产 国产成人| 亚洲日本中文字幕在线播放| 麻豆精品永久免费视频互動交流| 无码少妇一区二区三区奂费| 國產激情視頻一區二區三區| 色多多精品视频在线观看入口| 18一20女一片毛片| 亚洲国产精品免费线观看| 第一视频区亚洲日韩| 国产一级137片内射新月直播| 亚洲性爱免费视频网| 欧美A V色综合综合| 亚洲中文字幕无码一区在| 国产一级内射视频在线观看| 美腿少妇资源在线网站| 中文字幕精品无码视频| 国产一区二区三区试看| 好湿好紧水多aaaaa片秀人网| 日产一级毛片免费| 色777在线观看女人视频| 亚洲欧洲日产最新aaav毛P一区| 做暖暖爱视频免费视频网站| 国产精久久一区二区三区蜜臀| 国产精品无码一二三四区| ?愛妃?亚洲码国产精品高潮在线 | 99久久久综合狠狠综合久久| 欧美日韩国产综合一区WWV| 亚洲女人被黑人巨大进入同性| 午夜一区二区三区| 亚洲精品国产精品乱码涩涩| 国产精品18久久久久不卡| 黄色一级在线网站| 亚洲日韩A∨无码久| 乱码专区一卡二卡国色天香| 亚洲最大激情综合| 亚欧自拍偷拍真实视频| 免费的黄色小视频 | 亚洲乱码国产乱码精品精男同| 久久riav国产精品在线免费观看亚洲| 999国产精品欧美在线a| 高清一道本一区二区| 亚洲精品色午夜无码专区日韩| 国产无码精品在线观看每天| 揉捏奶头高潮呻吟视频| 成年奭片免费观看午夜网站| 欧洲成www免费网站| 亚洲七七久久综合影| 亚洲国产一级在线播放| 1024你懂的国产精品| 欧美一区在线看| 亚洲美女 国产精品| 国产呦系列一区二区三区| 秋霞手机影院亚洲无码| 无码a片视频免费播放| 久久综合九色综合影院| 午夜精品久久中宇午夜精品 | 亚洲免费视频费观看在线| 国产在沙发上午睡被强| 草莓视频下载app深夜| 国产麻豆高清国产在线视频精品视频| 无码人妻精品一区二区三区99不卡视频 | 黑帮大佬和我的365日第2季| 黄色片网站国产免费| 无码国产精品一区二区免费3p| 四虎欧美在线观看免费| 古代全部一级毛片在线完整版 | 亚洲一区二区在线精品少妇| 波多野结衣在线无码播放中文字幕| 最新老熟女AV导航| 一个人看的免费视频WWW中文字幕| 99精彩国产在线视频| 午夜亚洲国产中文精品福利在线| 乌克兰美女的小嫩bbb| 免费手机黄色网址| 成人免费av在线| 久久精品视频播放试一试| AV无码精品1区2区3区| 老司机天天操夜夜操| 亚洲另类视频一区二区| 国产精品视频一区国模私拍1| 亚洲日韩精品?∨片无码加勒比| 日韩欧美精品性久久| 97年清纯眼镜女神露脸口爆久久| 又黄又粗又爽的国产片| 欧美国产一级毛卡片免费| 亚洲av中文无码乱人伦在线播放| 日本久久亚洲激情| 超碰精品国产亚洲AV| 欧美日韩精品免费看| 亚洲乱码日产精品一二三| 欧美男军人同性videosbest| 99视频免费高清完整版| 国产真实露脸无码不卡视频| XXXX内射中国老妇| 不卡亚洲美女视频在线| 日韩欧美在线看片| 浪潮AV无码不卡天堂| 亚洲精品乱码久久久久久| 亚洲欧美中文日韩版| 欧美色图亚洲涩图| 欧美日韩精品粗暴视频播放| 国产高清国产精品国产k| 视频一区二区三区免费观看| av网站免费的线看| A级全黄试看30分钟小视频| 亞洲歐美中文日韓在線V日本| 日韩高清午夜福利| 亚洲免费视频费观看在线| 亚洲欧洲日产国产最新| 国产乱人无码伦aⅴ在线a| 999精品视频在线观看热6| 小兔子好软水好多视频| 日韩欧美成人字幕在线观看 | 好吊妞国产欧美日韩观看在线| 久久成人免费毛片高清观看 | 国产在线观看自拍欧美| 精品人妻少妇丰满久久久av免| 欧美日韩精品影院第1页| 黑人精品人妻无码少妇| 一区二区三区福利在线视频| 一级毛片中文字幕野战| 国产内部无码AV推油区| 99亚洲精品热视频国产| 了解最新99精品久久精品一区二区| 国产AV破女高中生下海| 无码 国产 精品 高潮 免费| 69堂无码国产精品色四婷婷专区| 99精品视频九九精品| 国产一国产一级秋霞片| 四川40来岁A级大毛片| 黑帮大佬和我的365日第2季| 青草久久久国产线免观蜜芽 | 国产日本草莓久久久久久久| 两性高清性色生活片性高清←片| 国产精偷伦视频在线观看| 日韩高清在线中文字带字幕欧美一区亚洲二区| 日韩国产另类无码av| 亞洲A∨無碼一區二區| 88AV在线视频观看| 用各种异物把她C到高潮的小说| 91精品国产一区二区三竹菊影视| 日本欧美高清在线观看| 国产sm强制高潮窒息失禁文字| 国产对白美女口爆吞精| 久久人妻无码毛片a片麻豆潘金莲| 国内精品小视烦在线| 黄色在线观看视频| 色超碰97一区二区三区| 亚洲综合久久一区二区app| 一级全黄裸体免费观看视频| 国产成人A在线观看视频免费| 一二三四日韩视频免费看| 国产午夜三级视频在线观看| 成人丁香五月天天堂AV在线一区 | 黄色一级在线网站| 欧美久久精品看看| 在线看片你懂的| 亚洲人妻无码开后门| 精品婷婷国产综合久久性色| 在线观看的网站你懂的| 国产欧美性爱亚洲成人自拍| 欧美特黄一级高清免费的香蕉 | 久久久精品视频一区| 欧美日韩精品粗暴视频播放| 亚洲av成人亚洲| 成人看片黄A 在线观看| 精品蜜桃久久久久久久91| 手机中文AV不卡| 二区三区亚洲精品国产| 手机中文AV不卡| 国产亚洲一品二品AV在线播放| 亚洲色无码国产精品网站| 免费国产在线精品一区二区三区大| 人妻少妇资源在线| h动漫精品3d动漫3d动漫在线| 狂躁少妇无码中文字幕| 综合激情青草自拍| 国产欧美日韩亚欧| 无码 国产 精品 高潮 免费| 小兔子好软水好多视频| japanesehd无码国产在线看| 国产成年免费看片| 亚欧国产日韩欧美在线观看| 亚洲国产久久久无码AV中文字幕一区不卡 | 日本精品三区四区在线观看| 久久久免费不卡av二三 | 这里有精品店日韩无码| 狠狠色噜噜狠狠狠7777米奇| 亞洲歐美綜合區自拍另類| 无码一区二区三区免费看视频| 一级字幕中文欧美日本黄页| 浪潮国产精品视频一区二区| 高潮潮喷精品在线| 日韩毛片国产精品一区二区| 综合久久网美利坚合众国| 无码av中文字幕剧情不卡| 国产日韩欧美αⅴ免费在线| 羞羞视频APP在线观看| 日韩A 精品一区二区视频| 久久中文字幕国产熟女| 国产亚洲曰朝精品视频自拍| 午夜国产一区二区三区在线观看| 又爽又大又光又色的午夜视频| 国产片av国语在线观看手机| 国产乱伦麻豆视频| 亚洲精品无码?V天堂久久| 亚洲国产精品性色av| 婷婷国产天堂久久综合五月色| 国产国庆A片在线观看| 国产成年免费看片| 91精品国产91久久久无码伦| 国产aⅴ无码久久久高潮老头| 无码破解在线白丝喷水av| 少妇无码专区免费无码视频| 天天天色天天色| 欧美性色欧美a在线图片| 色五月激情久久久中文无码| 日韩司机AV毛片| 国产精品丝袜自慰在线观看| 日韩av在线电影| 欧美黄色一级大片久久| 国产大学生AV片在线观看| 人妻少妇中字幕一区二区三区| 久久久亚洲欧美精品导航| 国产美女被操在线观看| 国产无码在线一区二| 丁香六月婷婷久久综合| 日韩精品毛片人妻AV不卡| 2023最新国产成人自拍| 日韩欧美亚洲中文乱码| 国产av激情无码久久| 国产美女精品视频第一页| 日本道綜合一本久久久88| 麻豆国产精品v?在线观看| 欧美人与禽交片免费网站| 日产精品卡一卡二卡三| 美女131黄的全部免费| 线上情人无码DVD| 国产一区二区不卡更新| 久久水蜜桃精品一二区| 99ri日韩无码一区| 日韩一区精品视频在线看 | 女人扒开屁股让男人桶30分钟| 亚洲一区二区三区在线播放 在线播放| 男女18禁一区二区三区口H毛片| 国产2020亚洲欧美在线视频最新| 99综合视频在线免费观看| 少妇做爰XXXⅩ性视| 在线视频亚洲自拍| 精品一卡二卡三卡四卡免费| 综合亚洲伊人午夜网| 亚洲AV成人小说一区二区三区| 中国精品视频一区二区| 欧美日韩国产成人免费在线观看| 欧美日韩综合久久| 欧美亚洲自拍偷拍| 午夜午色在线好看无码少妇| 日韩亚洲A V人人夜夜澡人人爽| 公天天吃我奶躁我的在| 亚洲视频一区二区三区在线观看| 国内精品91最新在线观看| 国产产在线精品亚洲aavv| 亚洲人妻无码开后门| 亚洲AV永久无码国产精品久久| 免费不要钱的黄片软件| 男人吃奶摸下挵进去好爽在线观看| 影音先锋中文无码一区| 97一区二区三区| 国产成人亚洲综合a∨色欲| 日韩一区二区精品在线| 国产真实露脸精彩对白91| 久久成人免费毛片高清观看 | 欧美交换配乱婬粗大最火爆亚洲 | 草民午夜理伦三级| av中文字幕不卡三区| 亚洲国产精品91久久| 亚洲精品日本特选| 一区二区吉泽明步中文字幕| 青春草成人在线视频 | 天堂资源网欧美亚洲| 欧美综合婷婷欧美综| 中文字幕aⅴ在线视频| 国产高清精品福利| 日本不卡视频在线免播放观看| 久久综合无码?v东京热 | 国产一级aa无码黄毛片| 无码中文人妻字偷2020| 91精品国产一区二区三竹菊影视| 国产巨作av欲擒放纵无码| 亚洲AV综合色区无码一区精品| 国产按摩店精品视频| 日韩无码高清视频一区二区| a级毛片中文字幕完整版| 中美日韩三级毛片免费观看| 色偷偷资源站在线视频观看免费| 欧美人与动牲交a欧美精| 麻豆精品永久免费视频互動交流 | 东京热无码精品一区二区| 亚洲欧洲av一区二区在线观看 | 亚洲精品日本特选| 一级黄片免费播放| 亚洲ⅴa曰本va欧美va视频| 日韩在线毛片视频播放| 免费观看黃色无遮A一级视频| 久久中文字幕国产熟女| 在线观看高清无码免费| 露脸在线国产眼镜| 国产一级aa无码黄毛片| 中文字幕亚洲乱码女一区二区| 国产成人精品黄片| 国模精品视频一区二页| 超碰cao18随时屏蔽人人| 国产cd人妖在线播放| 码粉嫩小泬无套在线观看| 国产精偷伦视频在线观看| 亚洲日韩国产一区二区性色| 99久久精品毛片观看| 一区二区三区毛片观看| 国产一区二区 国产精品| 粗壮公每次进入让我次次高潮| 黄页免费在线观看日韩| 亚洲Av无卡无码高潮影视 | 野花视频最新免费完整版在线观看| 欧美日本一道本一区二区| 日韩欧美亚国产三级片| 综合图区亚洲性爱| 国产精品天干天干在线观| 国产精品无码av有声小下载说| 日韩精品人妻专区| 中文字幕日韩无码av偷拍| 无码精品人妻一级淫乱性爱大战| 久久久久久久这里只有精品偷拍厕拍视频| 国产录音一区二区三区| 亚洲色图欧美一区二区不卡| JK娇喘高潮福利视频| 欧美人妖电影在线观看免费| 国产精品美女免费视频观看| 国产巨作av欲擒放纵无码| 人成年轻在线无码视频在线观看| 免费看一级a一级久久| 午夜激情男女日本| 欧美黑人一区二区久久久| 亚洲日韩在线中文字幕第一页| 久久综合亚洲色一区二区三| 精品无码国产自产拍在线观看| 亚洲国产精品丝袜无码| 青青草国产自产在线免费| 国产乱码一区二区免费| 日本乱人伦电影在线观看| 色噜噜AV在线综合| 在线免费亚洲免费亚洲| 影音先锋强奸乱伦资源网| 日本护士毛茸毛毛茸| 久久中文字幕国产熟女| 51视频精品全部免费永久| 国产日韩欧美一区精品| 国产精品久国产精品| 成人精品午夜无码免费视频观看| 午夜福利视频黄色| 亚洲无码电影等最新內容| 69国产精品成人无码视频色 | 一级二级高清无码免费视频| 精品视频香蕉在线| 久久久久久国产精品无码| 欧美日韩精品久久久| 在线看片国产的免费的| 亞洲中文字幕av無碼區| 2021亚洲色中文字幕在线| 国产日韩精品aⅴ一区二区电影| 品国产一区二区三区AV| 拔萝卜免费高清视频播放下载| 久久久久久久久无码精品亚洲日韩 | 羽月希奶水饱胀在线播放| 中文字幕亚洲乱吗v在线| 国产精品剧情av一区二区| 高清成年美女网免费视频| 欧美视频 第1页| 亚洲av永久无码精| 国产在线精品二区刘亦菲| 国产户外露出视频在线观看| 暗交小拗女一区二区三区图片| 欧美综合高清在线观看| 少妇中文免费日本| 怡红院怡春院欧美2021| 久久久久亚洲AV成人无码小说 | 精品人妻无码一区二区视频黑人| 国产老妇伦国产熟女老妇高清97| 国产区精品区av片| 国产专区尤物极品在线| 99re6在线视频精品免费bd| 久久久久毛片一级录像| 欧美三级在线日韩| 精品乱码一区二区三四| 在线观看理论电影播放网址大全| 美女的大胸又黄又www又爽| 中文字幕不卡一区每日更新| 好色先生污视频软件| 国产在线拍偷自偷| 媚薬强制注入で乳首在线播放| 亚洲H成年动漫在线观看不卡| 国产在线 欧美日韩| 无码在线视频亚洲色图| 国产成年免费看片| 无码av中文字幕剧情不卡| 欧洲一级精品毛片大全| 亚洲j激情综合一区| 新天堂资源网免费观看| 亚洲a∨中文无码字幕色下药| 性figb78欧美暴力猛交69| 色欲悠久久久久综合网日本| 久久人人爽人人爽人人爽| 日韩高清atv无码| 国产精品制服丝袜第一第二区三区| 秋霞网气质丰满肥臀x99av| 亚洲手机在线日本一二区三区 | AV日韩A∨亚洲AV电影| 综合国产三级免费| 黄色视频在线观看免费播放| 无限看片在线版免费视频大全| 国产AV尤物一区二区三区| 国产精品剧情av一区二区| 国产av一区二区三区久久影院| 国产超级视频男人天堂片| 一区二区三区免费毛片视频| 亚洲老熟妇毛茸茸| 92在线精品视频在线播放| 欧美丰满熟妇XXXX猛交| 亚洲欧美另类久久久精品播放的| 五月开心综合婷婷| 果冻国产传媒61国产免费| 亚洲人成www在线播放| 熟妇仑乱视频一区二区| 亚洲天堂在线看| 婷婷激情婷婷激情产在线精品亚洲| 亚洲偷偷色无码中文字幕| 最近最新中文字幕在线6| 午夜爱爱爱爱爽爽网站免费| 亚洲剧场午夜在线观看| 久久中文字幕不卡高清| 51无人区码一码二码三码| 国产AV尤物一区二区三区| 亞洲一區第一頁| 国产精品一区二区夜色不卡| 欧美国产日韩中文字幕综合在线| 在线免费看性爱黄片不卡| 国产精品18久久久久久麻豆| 日本中文字幕视频| 一本大道香蕉久在线播放21| 亚洲国产另类一区二区三区| 国产愉拍刺激视频在线观看| 在线观看+中文字幕| 插插视频无码一区| 欧亚深夜成人福利久久| 管鲍之交分拣中心未满十八岁| 草莓视频下载app深夜 | 忘记穿内裤被同桌c到高潮| 亚洲另类国产综合第一| 亚洲制服欧美自拍另类| 亚洲网址在线| 日韩欧美国产综合视频| 欧美国产综合一区二区| ?国产高潮对白刺激视频| 亚洲欧美在线综合成人网| 久久综合一区二区精品99| 中文字幕无码色综合| 在线a免费播放a视频| 国产成人v?亚洲电影| 久久精品亚洲第一毛片| 国产永久免费高清在线观看视| 五月丁香合缴情在线看| 成人a片毛片大全免费| 欧美成人人在线免费| 色视无码少妇AV片在线观看手機看片影視| 一级真人片秋霞特色大片| 色多多精品视频在线观看入口 | 久久精品日韩AV无码| 国产成人91精品免费看片快| 久久精品夜色噜噜亚洲α∨| 欧美成人精品高清在线播放的直播内容| 国产高跟鞋丝袜在线观看| 精品久久人人爽天天玩人人妻| 日韩高清在线中文字幕一| 啊轻点灬太粗嗯太深了蜜桃av| 久久最近中文字幕视频高清| 自拍亚洲国产一区| 香蕉久久久久久AV网站| 国产高清一区免费视频| 日韩人妻无码精品综合区| 精品国产乱码一区二区三区aa| 国产成人精品日本亚洲77美色| 欧美性爱男人天堂| 一区二区三区电影乱码在线观看| 日韩一区二区三| 无码一区二区三区春药| 久久精品国产亚洲?V无码偷窥 | 国产成人综合激情欧美91| 久久久久亚洲国产精品视频不卡AA免费看| 日本不卡一二视频| 日韩Av三级无码中文字幕| 五级黄高潮片90分钟视频五级| 日韩欧美国产资源| 免费一级鲁丝无码| 老男人久久青草AV高清| 日韩一区二区二区| 亚洲午夜精品一级在线播放放| 免费视频直播毛片在线| 免费看片资源网站1024手机看片免费的| 国产欧美日韩亚欧| 依人青青爽在线观看视频| 日韩亚洲?V人人夜夜澡人人爽| 日韩欧美久久综合| 精品无码久久久久一区二区| 免费黄片全黄在线看| 人人妻人人人澡人人爽欧美二区| 国产又粗又硬又爽又黄的视频| 狠狠久久精品无码粉嫩AV| chinese人妻无码人妻| 2021最新视频无码大全| 亚洲欧美日韩黄片| 精品国产成人亚洲午夜| 办公室玩弄娇喘秘书在线| 亚洲嫩模图色小说区| 欧美高清成人| 午夜福利电影在线观看| 少妇性l交大片免费看| 亚洲福利视频网址| 国产精品久久久久久妇女| 亚洲中文字幕二区成人在线观看二区 | 久久精品成人无码Aⅴ片观看| 国产又爽又猛又粗又色对黄| 亚洲精品综合第一国产综合| 台湾三级—中文字幕| 小蝌蚪app无限观看污免费 | 亚洲日韩精品?∨片无码加勒比| 老男人久久青草AV高清| 有码无码中文人妻视频| 国产高清成人大片| 美女扒开腿让男生桶免费看动态图 | 久久精品免费看国产电影| 成年人激情网| 欧美精品在线视频中文| 亚洲欧美日韩国产成人精品在线| 俄罗斯女女破苞视频| 性放荡视频在线观看播放| AⅤ不卡在国产在线观看| 久久9精品区无套内射无码| 国产女王免费区视频| 国产应用播放免费以及亚洲国产日韩 | 科普一下男生女生怼怼怼更新| 埃及艳后荒淫史一级毛片在线 | 亚洲A v无码专区在线播放中文| 一区二区三区亚洲春药播放| 国产精品久久久久久av下载| 色久人妻中文字幕| BBWHD老太大欧美| 徐璐扒开腿让男人桶爽久久| 亚洲欧美三级小视频| 国产一级137片内射新月直播| 欧美人牲交ā欧美精区日韩| 亚洲成人毛片一区二区三区| 在线观看www福利视频网站| 无码人妻AⅤ一区二区三区湄公河| 亚洲乱码中文字幕综合| 人妻系列aⅤ无码久久免费| 欧美日韩一区日本成人一区二区| 美女很黄很黄国产免费| 日韩 中字 无码| 日韩三级视频网站在线播放| 91精品國產福利在線觀看麻豆| 婷婷国产天堂久久综合五月色| 欧美午夜精品久久久| 野花影院大全免费| 爱爱视频永久免费网站| 国产第二页页在线播放| 91精品国产自产拍在线观看| 日韩精品在线观看网站| 婷婷五月人人| 91午夜理伦私人影院| 99精品一区二区三区无码吞精茶| 久久夜色精品国产噜噜亚洲αv| 亚洲精品成人a v久臂桃| 无码高潮爽到爆的喷水视频app| 国产经典?∨三级在线观看| 中文字幕第一页欧美精品| PlX一439和讨厌的上司出差| 国产成年免费看片| 日韩亚洲成a人片无码| 四虎免费影院com| 欧美国产一级毛卡片免费| 久久精品国产亚洲AV成人浪潮| 99爱精品影院免费视频| 国产成人av高清免费观看在线| 欧美老片特级在线手机观看| 欧美亚洲综合久久99成人 | 亚洲一区二区二区三区大片| 黄色视频大全在线免费观看| 亚洲无码五月天在线| 91久久久久久无码精品国产 | 国产h片在线观看免费| 在线精品国产自二区不卡| 国产精品一区二区夜色不卡| 高潮喷吹在线精品视频| 国产日韩欧美一区精品| 欧美久久精品看看| 菠萝菠萝蜜在线观看视频社区| 久久无码中文字幕人妻| 精品少妇avav免费久久久| 亚洲国产日韩综合视频| 国产乱视频在线| 奇米7777四色成人影视色区| 国产最新亚洲综合| av在线日韩国产| 中文字幕亚洲乱码女一区二区| 奶好大灬灬好硬灬好爽灬无套视频| 国产成人无码AV一区二区网站| 国产精品国产成人免费看| 老熟女强人国产在线视频| 少妇一级婬片a片aaaa| 成人av在线大香蕉| 久久国产99欧美| 无码 国产 精品 高潮 免费| 免费观看在线视频黄片| 99久久精品毛片观看| 天堂AV成人无码久久精品| 女人弄爽到高潮免费视频网站 | 妇女bbbb插插插视频中文字幕| 久久国产精品无码超碰| 日本高清精品视频免费| 国产一级毛片无码视频边| 成人国产一区二区三区精| 国产91高清在线观看源| 日本福利视频一区| 在线观看免费的网站| 2021最新视频无码大全| 大香蕉一人久草| 人 成视频在线看| 亚洲欧美精品天堂久久综合一区| 亚洲综合分类自拍视频| 精品一区人妻中文系列麻豆| 亚洲精品色午夜无码专区日韩| 丰满爆乳一区二区三区霸乳| 好满射太多了装不下了短视频| 国产午夜福利短视频在线观看| 国产精品剧情av一区二区| 日本免费一区二区三区激情视频| 久久久久成人无码网站| 日本精品久久久久久久| 精品亚洲成?人在线观看青青| 北条麻妃肉丝袜办公室| 在线观看av的无毒网址| 在线观看腿交射精无码av| 亚洲国产三级免费| 午夜精品视频一区二区三区| 一本久久道aa兔费看| 热播综艺动漫高潮迭起!| 亚洲欧美日韩—级特黄在线 | 亚洲偷偷色无码中文字幕| 坐在他的腿上把内裤蹭到一边| 天堂波多野结衣一区二区| 反差婊吃瓜黑料爆料黑料91福利社区试看一分钟 | 免费无码?V片在线观看国产| (凹凸影业)亚洲欧美日韩在线观看 | 国产精品一级免费AV| 国产成人ay手机在线观看| 打扑克又痛又叫软件| 日韩一线二线伦理片免费观看网页| 欧美日韩综合新一区| 亚洲可干人妻中文字暮| 成人國產精品久久久免費| 亚洲欧美日韩—级特黄在线 | 人人骚天天日夜夜欢| 国产产在线精品亚洲aavv| 香蕉久久夜色精品国产尤物| 久久久久久国产精品无码| 国产91一区二区三区在线不卡| 中国~级免费毛片| 欧美亚洲综合自拍| 羞羞视频APP在线观看| 精品国产不卡自在线拍精品| 伊人亚洲欧美日韩| 国产真实高清无码在线| 日韩区中文字幕无码视频| 8×8X海外永久免费视频| 日产精品l区2区| 亚洲欧美日韩—级特黄在线 | 国产国庆A片在线观看| 黄色一级久久毛片| 欧美在线观看网址| 天堂俺去俺来也官网| 日韓豐滿少婦無嗎視頻激情內射| 88AV在线视频观看| 欧美在线观看网址| 亚洲无码电影在线播放| 玖玖资源站无码专区| 国产性感美女一区二区| 国产在线91精品一区| 偷窥隔壁人妻bd高清中字| 亚洲国产成人九九综合| 国产一区二区色婬影院9| 惠民福利国产精品乱码一区二区| 超碰cao18随时屏蔽人人| 精品无码一区二区三区电影| 愛妃精選国产成人精品久久综合| 国产的一级毛片看看| 婷婷激情就去吻亚洲综合在线播放| 久久久亚州熟妇AⅤ无码| 精品无码秘人妻一区二区媚黑| 国产乱人伦偷精品视频免费网址| 亚洲性人人天天夜夜添| 粉嫩小泬久久久一区二区| 亚洲欧美日本在线一区| 国产在线精品二区刘亦菲| 国产猛男猛女超爽免费视频久| 84aaa在线观看视频福利| 免费无码在线观看| 在线观看人成视频免费观看| 日韩高清亚洲日本人| 老师太深了要坏掉了h| 欧美日韩高清交| 久久中文字幕不卡高清| 无码精品人妻一级淫乱性爱大战| 天天看片国产精品| 婷婷丁香久久| 色婷婷五月综合激情在线观看| 欧美成人精品高清在线播放的直播内容| 国产盗摄一区二区三区厕所视频| 中国精品一级毛片免费播放性色AV网站 | 国语自产视频在线社区| 欧美乱人伦久久精品| 玖玖精品中文字幕| 性欧美巨大的视频| 午夜两性视频| 日韩无码精品视频夜夜操| 午夜福利久久久久久| 亚洲精品婷婷综合| 了解最新国产www在线播放| 欧美国产日韩手机综合| 久久人妻区2区3网站| 亚洲一级在线播放a| 欧美第一页激情在线| 久久婷婷五夜综合色啪| 91超碰极品人人人人成人| 国产精品老女人精品| 老欧性老太色HD大全| 欧美日韩免费高清| 国产精品女A片爽爽免费按摩| 午夜福利电影6080久久精品| 亚洲网在线观看| 久久久久国产美女免费网站| 久久成年女人99视频| 日本韩国欧美国产国产| 九九国产精品视频播放| 欧洲精品乱码人妻中文字幕 | 毛片手机在线视频免费观看| a级日本高清免费看| 精品久久久久久久久久久久| 人妻av无码系列一区天堂| 97久久超碰国产精品…| 草莓美女视频高清在线观看| 高清久久综合精品| 色综合天天干天天操影视| 精品少妇avav免费久久久| 羞羞视频APP在线观看| 久久综合精品国产一区二区三区无码| 日日摸处处碰夜夜爽视频| 国产色乱子伦视频| 久久中文字幕人妻网站| 新天堂资源网免费观看| 日韩新无码精品毛片| 97人妻碰碰碰久久久禁片| 国产农村一级毛片精品久久| 中文字幕在线观看中文无码不卡一区| 2019nv天堂网一日本免费一区| 伊伊综合在线视频无码| 性欧美俄罗斯乱妇| 国产在线精品二区刘亦菲| 天天在线中文无码视每天大量更新 | 性放荡视频在线观看播放| 国产成人v?亚洲电影| 色狠狠久久av五月综合五月av| 欧美三级大香蕉| 久播影院中文无码| 国产三级av在在线观看网站 | 97色综合久色aⅴ中文| 国产欧美一区二区三区免费不卡在线| 国语AⅤ毛片一区二区三区| 免费三级黄色| 精品天天做天天爽夜夜爽人妻爽 | 日韩在线中文字幕16P| 香蕉欧美成人精品α∨在线观看| 一级毛片午夜| 国产色抖阴视频在线观看| 呦呦最新伦理网址| 一区二区三区毛片观看| 女人被男人爽到呻吟的视频| 欧美亚洲国产日韩在线电影| 日韩日批在线播放视频| 淫语调教视频在线观看| 酒店内射熟女在线观看| 91tv成人精品人妻91资源| 快播在线视频观看| 亚洲一区二区三区在线不卡| 国产精品香蕉有码视频亚洲aaaa级特黄一级毛片 | 中文字幕av无码一区二区蜜芽三区| 欧美丰满老熟妇BBBBB| 看国产成视频在线观看| 18一20女一片毛片| 日韩电影国产精品亚洲首页| 免费真人视频网站直播下载| 成人资源在线观看| 国产日韩欧美制服丝袜剧情| av毛片在线播放免费 | 日韩成人精品毛卡片视频| 久久中文字幕女人| 亚洲日韩中文字幕欧美| 双性美人哭唧唧喷水| 字幕网最新中文资源站| 99久久久无码精品免费| 天天影视色香欲综合网338| 日本精品一区二区三区蜜桃| 亚洲一区二区三区无码少年| 色欲av蜜桃一区二区三| 成人在线影院免费观看| A 'V片欧美日韩在线| 理论免费视频在线观看| 国产的免费拍福利短视频| 一级aa免费毛片高潮| 女理发店一级毛片| 猛免费久久精品三级video扒开| 日韩成人性视频| 久久夜色国产精品禁果91| 91精品国产一区二区三竹菊影视| 日韩午夜福利一区视频| 中文一区二区三区高清| 亚洲AV成人小说一区二区三区| 欧美日韩高清交| 国产原创中文字幕在线观看| 欧美怡红院色网视频| 无码一区二区三区在线观看| 欧美zooz人禽交免费观看| 又爽又大又光又色的午夜视频 | 看国产一级片在线日韩国产| 无人在线观看高清完整免费| 1024手机看片人妻无码旧版| 精品国产成人亚洲午夜| 69式在线观看视频免费| 亚洲美女高潮电影| 国产乱码视频一区二区三区| 橙子视频app污下载| 永久在线亚洲观看| 亚洲?ⅴ片不卡无码久久嫩模| 青草青草久热精品视频在线播放| 国产精品99精品一区二区三| 在线观看免费大黄美女视频| 精品无码一区二区在线观看| 国产精品1区在线观看| 最新久久无码视频| 午夜福利电影在线观看| 免费久久无码专区高潮喷水| 亚洲一区人妻系列| 国产在沙发上午睡被强| 东京热无码人妻一区二区三av| 2o2o精品国产色在线| 久久青草费线频观看地址| 131美女做爰A片免费看软件| 少婦無碼一區二區三區免費| 亚一亚二国产专区| 国产真实交换配乱婬95视频| 4080yy理论菠萝蜜小视频| 亚洲日本熟女99热| 国产高清一区二区| 欧美专区一区二区三区| 18岁成人免费软件免费app| 亚洲日韩αⅴ在线观看| 日韩美女在线观看一区二区日| ?超超碰中文字幕伊人 | 国产精品高颜值| 野花香视频高清免费观看| 双性男怀孕产乳生子| 精品视频在线观看免费中文字幕| 99久久夜色精品| 黄频免费在线观看| 东京热久久无码视频| 成人无码1234在线观看| av无码中文不卡在线观看| 日韩一线二线伦理片免费观看网页| 国产免费黄色电影| 亚洲欧美日韩看国产| 超碰中文字幕人妻导航| 日本高清www午色夜黄| 欧美在线观看视频免费播放一区二区三区| (凹凸)久久精品国产中国久久 | 好男人在线资源天堂网| 久久99国产综合精品免费麻花| 日韩A 精品一区二区视频| 在线看片国产的免费的| 欧美日韩一区二区在线视频播放伊| 成人綜合在線觀看| 黑人入室强丰满人妻| 永久福利视频| 国产精品老女人精品| 黑人巨摘花第一次出血| 一级二级高清无码免费视频| 国产福利短视频影院| 男人天堂视频在线观看| 国产精品 十八爽爽爽| 99视频这里只有精品6| 天天天天做夜夜夜夜做无码| 久久最新国产刺激| 在线看片国产的免费的| 夫妻性生活真人版视频| 酒店内射熟女在线观看| 三级在线wwwfreemoviea久久瑟瑟 国产亚洲曰朝精品视频自拍 | 性xxxⅹ俄罗斯女人喷水| 国产制服丝祙在线观看| 亚洲老熟妇毛茸茸| 成年女人午夜毛片| 黄色在线观看视频| 天天5G天天爽网站| 特级毛片a级毛片免费播放100| 野花影视大全| 午夜精品视频一区| 欧美激情一区二区三区四区在线| 亚洲国产精品自在线| 黄色软件下载华为| 成人av在线大香蕉| 惠民福利狂野欧美性猛交xxxx| 青青青草最新免费网站| 人人揉人人捏人人添| 激情文学无码中文字幕| 韩国无码一区二区三区| 蜜桃?v在线播放免费观看网站| 国产欧美日韩精品一区免费| 三个男人躁我奶头好舒服| 欧美综合高清在线观看| 我们免费观看亚洲无码视频| 久久久亚洲精品一级片| 欧美日韩综合久久| 国语自产拍在线观看任你躁| 美女A∨福利片在线观看 | 中文字幕一永久免费观看| 码粉嫩小泬无套在线观看| 日本和韩国免费不卡| 国产又粗又硬又爽又黄的视频| 国产在线拍揄自揄拍无码t| 啊灬日出水了灬用灬力| 国产高清黄色AV| 日本人妻巨大乳挤奶水视频 | 韩国R级19禁未删减版| 老司机导航亚洲精品导航| 精品人妻少妇av一区| 欧美图片区+自拍偷拍| 91久久精品国产性色tv| 国产成人亚洲精品91专区手机| 国产精品永久视频免费| 午夜欧美激情| 狠狠爱婷婷网五月天久久| 国产精品无码6080| 欧美日韩v中文在线| 欧美高清在线播放一区二区| 最新国产成人盗摄精品视频| 国产多人群p在线视频观看| 欧美丰满熟妇乱XXXXX流白浆| 免费特级一级作爱片| 女人18A级毛片综合久久| 一區二區免費在線觀看| 日本人69xXⅹ69护士| 红杏亚洲影院一区二| 波多野结衣 无码av在线播放| 日韩在线中文字幕16P| 国产精品无码天天爽视频| 天堂波多野结衣一区二区| 黄色一级在线网站| 在线观看视频国产区se| 人人人97人妻交换视频| 又爽又黄又屋遮挡的视频| 欧美人牲交ā欧美精区日韩| 国产无码在线观看免费视频| 国内外激情在线观看视频| 在线看不用F载的黄色视频| 欧美人牲交ā欧美精区日韩| 国产日韩欧美亚洲精品96| 最新海角社区登录入口大事记| 琪琪午夜理论片视频| 免费视频不卡| 好硬好湿好爽再深一点m视频| 黄色片网站国产免费| 在线观看美女裸体视频无马赛克| 7m最新精品视频在线观看| 尤物视频亚洲无码| 国产福利短视频影院| 538prom国产在线视频一区| 中文国产日韩欧美旡线码| 国产一级视频在线免费看| 国产精品高清在线观看93| 中文字幕人成不卡一区| 日韩国产成人软件在线观看| 中国a级淫片免费播放| 色婷婷亚洲精品天天综合影院| 人妻无码日韩丝袜视频| 国产精品 十八爽爽爽| 久久久丰满人妻一区二区三区| 欧美日韩高清交| 经典自拍视频欧美日韩在线观看网站| 成人在线影院免费观看| 亚洲国产视频91在线| 亚洲一区精品无码色成人| 国产一区国产一区日韩二区欧美三区| 婷婷激情婷婷激情产在线精品亚洲 | 日韩欧美精品一区二区三区久久久| 欧美国产成人久久久| 成年女人午夜毛片| 色播久久人人爽人人爽人人片AV| 十八禁欧美日韩| 精品日韩在线视频一区二区| 色香蕉视频在线观看| 中国毛片黄片免费视频| 亚洲香蕉网站在线播放| 国产精品高颜值| 高潮毛片无遮挡免费午夜| 黄色片网站国产免费| 3d动漫精品一区二区三区| 少妇无码专区免费无码视频| 在线观看理论电影播放网址大全| 亚洲欧美日韩高清专区国产| 自亚洲国产品手机在线| 精品久久久片| 精品一线天无码视频在线| 手机在线看片 你懂的| 日韓豐滿少婦無嗎視頻激情內射| 国产精品一区二区夜色不卡| 国产精品99一区二区三区免费| 亚洲欧美一区二区三…| 男男男全肉高H湿PLAY短篇| 国产精品免费无遮挡| 中文字幕在线亚洲日韩一页| 福利精品一区| 成年奭片免费观看午夜网站| 秋霞手机免费看片| 影音亚洲制服无码中文| 久久精品无码一区二区免费| 好黄好硬好爽视频| 中文字幕伊人精品蜜桃| 樱桃视频成人播放器下载| 麻豆日产六区亚洲香蕉人视频| 精品无码一区二区三区电影| 国产亚洲欧美精品第一页在线| 国产精品 十八爽爽爽| 欧美成人免费在线播放| 午夜福利欧美在线日韩| 国产aⅴ无码久久久高潮老头| 精品一卡二卡三卡四卡免费| 国产精品视频每日更新廣大網友最新影片| 中国a级淫片免费播放| 日本免费一区二区三区在线看| 新搬来的女邻居不戴乳罩| 国产亚洲香蕉在线播放| 五月丁香合缴情在线看| 中文精品99久久国产香蕉| 亚洲国产成人av毛片大全| 2021国自产拍国偷自产| 在线看片国产日韩欧美亚洲| 国产一区二区不卡更新| 国产精品高潮小视频免费看| 麻烦中文进出社区久久久| 国产亚洲欧美精品电影| 91精品国产91欠久久久久| 人妻不卡一区二区| 日韩不卡一二三区| 久久综合九色综合97飘花电影| 日韩一区二区精品免费| 999国产精品欧美在线a| 国产精品女上位在线观看| 亚洲无吗一二区一级毛片| 国产午夜精品理论| 一级?性色生活片久久无码| 精品美女久久久久久免费| 十九岁电影韩国免费完整版| 欧美字幕中文字幕| 国产超级婬乱av片免费看| 中文字幕亚洲一区成人免费观看| 另类二区三四丁香六月婷| 亚洲制服丝袜欧美xfplay在线 | 嫩草视频在线播放| 成人精品日本亚洲成熟| 亚洲日韩AV在线波多野结衣| 国产97av在线播放| 98国产丝袜在线视频| 午夜福利在线视频二区| 国产91内射一区在线视频网| 又污又黄无遮掩的网站| 国产福利网红极品尤物| 日本免费h视频在线观看| 国产香蕉成人综合精品视频| 天天爽夜夜爽人人爽| 亚洲欧洲日产国产最新| 不卡亚洲美女视频在线| 狼友色成人网在线播放视频网站免费| 欧美xxxxx性开放| 亚洲精品老司机调教美女| 亚洲欧美综合图区18p下一页| 黄色三级国产网站免费观看| 精品久久久久亚洲av| 国产在线视频不卡香蕉| 黄色亚洲一区| 中年熟妇泄欲撞击肥臀视频| 欧美亚洲成人一区二区| 一区二区三区在线 网站| 十八禁在线网站| 男同在线观看免费网站| 国产专区尤物极品在线| 99re在線精品視頻| 一区二区美女视频免费| 日韩欧美精品一区二区三区久久久| 波多野结衣在线无码播放中文字幕| 国产按摩店精品视频| 成人动漫在线网站| 亚洲av无码成人精品国产澳门| 国产人成无码视频在线观看| 富二代精品自拍| 亚洲āV永久无码国产精品久久| 欧美亚洲三级片网站网址| 男女呻吟高潮18禁免费网站| 国产在线精品二区刘亦菲| 午夜精品视频一区| 国产主播久久| 国产AV尤物一区二区三区| 熟透欲妇丰满中文字幕| 一本久久道aa兔费看| 亚洲天堂第一福利导航| 被粗大的狼根进进出出毛片| 特黄特黄欧美亚高清二区片。| 国产黄片小视频在线播放| 免费不要钱的黄片软件| 一区精品无码动漫| 亚洲欧美日韩—级特黄在线| 国产午夜精品8mav在线观看| 四区无码免费清纯视频| 国产一卡二卡三卡 | 免费黄片全黄在线看| 日韓豐滿少婦無嗎視頻激情內射| aa级女人大片喷水视频| 小草青青手机免费视频影院| 亚洲老熟妇老熟女1| 国产精品99+久久精品| 国产骚婷婷在线观看| 欧洲成人在线观看| 日韩欧美成人字幕在线观看 | 日韩AV无码中文无码电影浪潮| 香蕉久久久久久AV网站| 久久无码一区二区三区WWW| 亚洲日韩av中文无码专区| 人与人恔配视频免费看| 亚洲日韩在线观看免费视频| 欧美日韩高清交| 午夜无码免费人妻AAA片软件| 无人在线观看高清完整免费| 天天狠狠久久中文av| 国产做爰又粗又大又爽| 日本成本人片免费久久| 亚洲av永久无码区成人网站| 国产精品丝袜自慰在线观看| 色欲国产一区二区| 国产麻豆精品SM调教视频| 无码人妻视频一区二区 | 亚洲香蕉网站在线播放| 野花香视频高清免费观看| 女高潮大叫喷水抽搐12| 男人的天堂丝袜视频| 天天看高清无码视频网| 深田咏美一区二区三区av高清| 国产一区二区噜噜噜| 一级特黄妇女高潮视的特点| 亚洲日本中文字幕在线播放| 岛国午夜福利一区二区| 91精品国产自产拍在线观看| 国产推油久久99久久99| 惠民福利久久精品国产亚洲AV无码娇色 | 又黄又爽又色无遮挡18禁网站| 成人綜合在線觀看| 无码国产观看一二三四区| 蜜桃?v在线播放免费观看网站| 黑人精品人妻无码少妇| 影音先锋中文无码一区| 久久久成人999亚洲区美女| 天堂亚洲日本va中文字幕| 亚洲欧美自拍henhen| 国产大尺度无码片在线观看国产三级片在线看| 麻豆国产成人AV高清在线观看 | 欧美一区二区成人片| 人妻激情中文字幕| 日韩无码高清视频一区二区| 国产精品女A片爽爽免费按摩| 91欧美亚洲国产中文五月天| 精品久久久片| 国产巨胸乳在线播| 日本护士╳╳╳HD少妇苍井空| 我扒开老师内裤我爽了一夜| 99国产成人精品无码青春| 黑人巨大欧美精品一区二区o | 国产做受14AV约直播| 青青热久免费精品视频精品| 第九色五月婷婷| 国产成人精品77上位| 在线欧美熟妇精美视频二区 | 波多野结衣在线一区播放| 国产盗摄高清在线播放| 久久亚洲天堂电影| (凹凸18+)亚洲日韩欧美国产中文| 色欲插插综合网| 作爱视频在线免费观看| 精品九九人人做人人爱| 国产精品白丝JK白袜喷水视频| av手机天堂在线版| 欧美丰满熟妇乱XXXXX流白浆| 国产有码视频三级玖玖中文| 500水多多视频导航| a级片a级片a片a级片| 国产剧情91高颜值美女| 黄色91视频下载| 精品国产乱码久久久久久红粉| 欧美国产日本在线91肉丝| 亚洲最大成人综合网720p| 免费看一级a一级久久| 九九美女網站免費| 男女爽爽无遮挡午夜视频在线观看| 亚洲欧美另类久久久精品播放的| 亚洲乱熟女香蕉一区二区三区| 国产一级二级三级毛片| 日本不卡一二视频| 午夜激情一级视频毛片| 特黄aaaaa级免费在线| 午夜福利中文字幕国产精选| 香港亚洲三级片人伦视频| 成人久久午夜影院| 有码无码人妻系列专区| 青春草成人在线视频 | 国产粗话肉麻对白在线播放在线高清| JK娇喘高潮福利视频| 国产精品中文字幕一区久久一区| 无码在线观看国产| 国产区精品区av片| 亚洲av无码成人网站含羞草| 国产一区国产一区日韩二区欧美三区| 黄色毛片免费观看视频| 在线观看男女羞羞视频网站| 狼友色成人网在线播放视频网站免费| 久久最新国产刺激| 中文字幕视频在线免费观看| 亚洲AV秘 无码波多野结衣h| 亚洲日韩国产精品久久久综合网| 亚洲色精品VR一区二区| 国产免费a∨在线播放| 丰满少妇一区二区| 国产宅男宅女精品?片 | 欧美毛片性情免费播放| 特级毛片爽www免费版视频在线 | 人体艺术一区二区三区| 国产明星精品无码av换脸| 免费啪视频观在线视频在线| 国产日韩高清网址| 国产成人精品国内| 在线电影日本激情视频在线观看免费 | 日韩欧美久久综合| 三区美女视频在线观看| 日韩精品亚洲一区二区| 欧美三级大香蕉| 男男sm捆绑调教Gay视频| 成人a片毛片大全免费| 无码人妻精品中文字幕蜜臀| 国产福利网红极品尤物| 无码人妻久久| 18禁黄网站女禁片| 综合图区亚洲性爱| 亚洲无码黑人视频| 国产av片在线看亚洲精品| 青草青青亚洲国产免观| 久久国产精品99国产精品| 亚洲日本高清在线| 91久久久久无码国产精品一区99| 猛免费久久精品三级video扒开| 日韩欧美国产一| 乖宝真紧h太好c了h| 国产女王免费区视频| 国产精品99久久久久久人小| 亚洲日本一区二区在线尤物| 日韩成本人Av免费观看| 久久综合成人在线国产观看| 无码中文高清少妇| 欧美一区二区三区四区性视频| 在线免费黄片亚洲| yjsp妖精视频网站| 亚洲欧美另类图片日韩| 国产精品亚洲专区无码牛牛在线| 91網址在線播放| 91在线无码精品秘国产苹果| 亚洲AV永久无码国产精品久久| 国语毛片免费一级高清视频| 国产97av在线播放| 亚洲国产日韩欧美高清不卡| 2021国产精品一区二区22| 亚洲人a成www在线影院| 国产一级黄片免费在线观看| 欧美另类69xxxxx极品| 欧美在线观看网址| 午夜激情在线一区在线视频精品无码 | 亚洲国产激情黄片| 第一次进小婷身体又紧 | 全部免费的毛片无遮挡| 中文字幕av蜜臀av色欲av| 国产高清精品福利| 日韩亚洲?V人人夜夜澡人人爽| 久久爱成熟女人粗暴毛片| 91欧美午夜精品| sm+女王调教+文| 亚洲国产日韩在线一区高清| 亚洲Av无卡无码高潮影视| a级毛片中文字幕完整版| 亚洲av中文字字幕乱码软件| 91少妇高潮喷水流白浆| 国内精品小视烦在线| 古代全部一级毛片在线完整版| 在公车上拨开内裤进入毛片| 国产频99热精品在线| 暗交小拗女一区二区三区图片| 国产在线观看一区二区三区| 最新国产成人盗摄精品视频| 欧美dvd一本道无码免费三区| 亚洲精品欧美在线综合国互動交流| 狼友有码高清av影片线播放| 国产欧美黑人一区二区三区四区| 风韵丰满熟妇啪啪区老老熟妇| 玩弄人妻少妇老师美妇厨房| 午夜国产一区二区三区在线观看 | 一区二区熟女日韩| 亚洲欧美日韩不卡一区二区三区 | 欧美ⅴa亚洲ⅴa在线观看| 亚洲日韩在线在线播放视频在线| 亚洲一区成人免费视频| 国产精品精品在线观看国产欧美日| 自产国产一区二区| 无遮挡啪啪高清免费看| 精品视频导航| 无码人妻熟妇av又粗又粗| 99ri日韩无码一区| 亚洲日韩激情无码一区| 在线免费看成人性情| 精品国产一区二区三区久久狼黑人| 一区二区美腿丝袜控| 亚洲日本中文字幕在线播放| 亚洲一区久久中文精品| 久久亞洲精品在線AV無碼播放| 日韩欧美三级理论在线观看| 了解最新国产www在线播放| 亚洲日本jiZZ国产| 91在线超碰国产精品| 久久综合国产精品视频成人无码 | 午夜影院免费在线高清观看| 国产精品高颜值| 精品婷婷国产综合久久性色| 国产精品欧美精品| 国产真实迷jian系列在线网站| 另类小说日韩欧美激情视频| 大战丰满无码人妻50p| z欧美一区二区不卡视频| 亚洲av青草久久福利 | 日韩综合国产在线| 熟妇的荡欲精品一区二区三区| 欧洲黄色精品视频一区| 西西人体www高清大胆视频| 天天在线中文无码视每天大量更新| 麻豆国产福利91在线| 久久久精品亚洲人与狗| 午夜免费福利片观看| 欧洲成人在线观看| 久久久久av综合网成人| 日韩视频高清一区二区三区| 一区二区美女视频免费| 2023最新国产成人自拍| 精品视频导航| 欧美影院成年免费版| 国产成人精品一区二区激情| 18禁黄网站女禁片| 国产剧情91高颜值美女| 精品熟女日韩中文十区| 高潮潮喷精品在线| 亚洲乱码一二三四区麻豆| 亚洲午夜精品一区二区蜜桃| 国产真实二区一区在线亚洲| 国产丰满乱子伦无码专区| 7m最新精品视频在线观看| 最近中文字幕免费完整视频高清1 欧美丰满熟妇XXXX猛交 | 波多野结衣中文字幕加勒比| 国产日韩污视频在线观看| CHINESE霸道太子新片青岛4P| 9lporny九色视频l偷拍| 男女无遮挡激情免费视频久| 国产精品18久久久久不卡| 国产真实迷jian系列在线网站| 麻豆久久精品网站| 亚洲国产精品成人久| 狐狸视频黄瓜视频在线观看| 欧美一区二区三区亚洲| 少妇性色午夜婬片AAA在线播放| 午夜精品一区二区三区宅男av| 丰满艳妇一区二区三区| 激情综合网激情亚洲| 国产制服丝祙在线观看 | 国产午夜精品福利久久网站| 免费一级AAA毛片观看| 色情乱婬A片无码天堂影院男组长 干我啊啊啊视频黄色国产在线观看 | 337p日本欧洲亚洲大胆张筱雨| 在线视频网站色秀视频| 精品无码一区二区在线观看| 亚洲无码黑人视频| 精品免费黄色毛片| 国产精品久久久久久妇女| 亚洲欧美中文日韩版| 91少妇高潮喷水流白浆| 重囗sm在线观看无码| 在线观看北条麻妃中文| 国产精品成人毛片| 欧美一级片丶日韩一级片| 菠萝菠萝蜜在线视频| 精品无码国产自产拍在线观看| 蜜臀AV99无码精品国产专区| 黄粉色APP下载地址| 老师太深了要坏掉了h| 亚洲一本大道无码av天堂| 要爽死国产一区在线播放| 亚洲剧场午夜在线观看| 国产精品99+久久精品| 欧美高清hd视频免费播放| 国产亚洲精品aaa在先线播放| 欧洲少妇一级视频在线观看| 日韩国语高清视频在线观看| 美女视频很黄很A 免费国产| 97色综合久色aⅴ中文| 人妻中文无码久热丝袜| 免费天堂无码成人AV电影| 久久久久无码国产麻豆| 成人网站免费视频在线观看| 久久国产精品人麻豆电影| 又黄又粗又爽的国产片| 99re在線精品視頻| 日本一区二区不卡深夜| 亚洲天堂一区高清完整视频| 欧美午夜精品精品一区| 丰满人妻被黑人中出849| 久久久久国产美女免费网站| 在线视频综合国产| 探花国产精品福利| 亚洲另类欧美日韩亚洲精品365P| 日韩中文字幕在线观看国产| 国产亚洲一二区精品| 国产乱码一区二区免费| 少妇裸体多毛推油按摩| 国产的一级毛片看看| 国产精品午夜自在在线最熱門最齊全電影!| 久久久成人999亚洲区美女| 激情亚洲的在线观看| 亚洲AⅤ无码国产| 亚洲自拍影视日本| 成长影院在线播放视频| 精品国产最大的调教网站| 91麻豆国产对白在线精品| 男女上下猛烈动态图午夜| 久久综合色老色| 亚州中文一二三四精品久久| 91超碰蝌蚪鲁一鲁久久| 天天在线中文无码视每天大量更新| 亚洲日韩五十路熟女视频| 丁香六月婷婷激情综合在线影院| 中文字幕av在线电影| 亚洲一区成人免费视频| 国产呻吟手机在线观看| 国产福利短视频影院| 国产成人精品国内| 精品99国产一区二区三区| 国产亚洲美女| 男同在线观看免费网站| 成人爱在线免费视频| 精品视频在线观看毛片| 国产女人爽到高潮久久久4444| 欧美日韩国产成人aⅴ| 一区二区三区日韩免费| 午夜在线视频国产极品片| 国产精品无码天天爽视频| 日韩狂欧美高清狂热视频| 久久国产精品99久久久久久牛牛| 69国产精品久久一区二区夜夜嗨| 欧美精品在线一区二区在线观看视频| 欧美一区二区在线免费观看。| 国产精品亚洲一区二区三区喷水| 亚洲天堂一区高清完整视频| 日韩高清在线中文字带字幕欧美一区亚洲二区| 可以在线观看的黄色网站| 1024你懂的国产精品| 国产在线拍偷自偷| 精品无码久久久久久国产理论| 国产乱码一区二区免费| 国产三级av在在线观看网站 | 免费精品无码一级毛片| 黄色片网站国产免费| 国产白嫩无套白浆456| 精品黄色视频网站| 国产性感美女一区二区| 国产伦精品一区二区三区高清版禁| 被操到高潮视频| 久久久一区黄网无码| 美脚の诱脚舐め脚责在线观看| 少妇系列中文字幕一区| 免费国产va在线视频| 囯产精品99久久久久久WWW| 干女人逼很爽的视频| 免费无毒永久av网站无码| 日日摸日日碰夜夜爽视频网站| 久久久久亚洲热无码av| 国外巨g乳熟妇av无码| 免费国产va在线视频| 亚洲三级电影av| 成人AV免费观看免播放器| 内射人妻无码| 亚洲日韩欧洲无码免费| 国产精品成人竹菊影视亚洲性爱在线观看 | 日韩精品无码去免费专区| 97碰碰在线看视频免费| 日产一级毛片免费| 日本va午夜片源在线| 国产黄色做a一级视频| 精品久久久看视频| 久久成人+一区+二区| 国产一级视频在线免费看| 一级免费视频a| 在线观看国产一区亚洲bd| 国产亚洲曝欧美精品软| 乳摇福利小视频在线无码| 国产精品xxxx国产喷水| 无码人妻熟妇av又粗又粗| 又粗又硬又色网网视频| 天天射天天射天天射| 蜜桃一区二区三区网站| 无码高潮爽到爆的喷水视频app| 国产粉嫩粉嫩的在线播放| 欧美日韩精品图片区| 久久精品青青大伊人av| 67id国产在线观看| 成人资源在线观看| 亚洲精品成人a v久臂桃| 日本在线欧美在线| 亚洲一区免费| 99久久99久久精品国产片| 国产亚洲精品在av| 黄色软件在线看日韩视频一区| 足 交 视屏在线观看| 国产精品夜色电影| 精品视频在线观看免费中文字幕| 91精品久久久国产| 国产精品剧情av一区二区| 91超碰蝌蚪鲁一鲁久久| 在线观看第一页AV| 在线观看欧美日韩免费| 国产福利网红极品尤物| 国产欧美日韩精品一区免费| 97婷婷亚洲精品| 最新97国产自在线拍视频| 青春草成人在线视频 | 国产美女大黑逼一区二区| 国产高潮白浆毛片aaaa| 亚洲精品国产精品乱码涩涩 | 亚洲一本大道无码av天堂| 久久久国产精品推荐| 日本韩国欧美国产国产| 亚洲国产大片久久久久久| 亚洲精品日韩丝袜| a久久99精品久久久久久蜜芽| 99热只有这里有精品| 91精品国产高清一区二区三蜜臀| 中文字幕AV毛片在线观看| 国产盗摄视频手机在线| 狐狸视频黄瓜视频在线观看| 国产欧美亚洲色图| 日本高清www色视| 你确定不点击进来看看欧美日产国产另类自拍| 东北女人高潮国产av| 国产日韩欧美制服丝袜剧情| 亚洲无码人妻av| 日韩美a一级毛片无码| 欧美人与禽交片免费网站| 亚洲另类国产综合第一| 青青草av国产精品| 影音先锋男士天堂资源站| 色播久久人人爽人人爽人人片AV| 免费黄日本韩国黄色片| 日本黄页在线观看免费| 在线视频综合国产| 韩国午夜久久夜理论电影| 色欲国产一区二区| 日本h片无遮挡在线观看| 日韩精品a免费一区毛片| 91香蕉视频污下载app最新ios| 69堂精品国产一区二区| 亚洲国产精品性色av| 男女上下猛烈动态图午夜| 國產激情視頻一區二區三區| 性欧美巨大的视频| 一区二区熟女日韩| 我要看三级黄色片子| 成人国产一区二区精品 | 久久成人+一区+二区| 美女视频免费观看黄的国产| 一级欧美AA片免费观看| 日本va午夜片源在线| 亚洲综干区人人福利| 131美女做爰A片免费看软件| 女高中生自慰免费观看WWW| 美女裸体自慰网站| 另类小说日韩欧美激情视频| 在線觀看一區二區三區四區| 国产午夜精品福利久久网站 | 一级a爱免费观看视频| 成人无码免费视频| 中文字幕欧美一区二区三区不卡| 丰满爆乳一区二区三区霸乳| 亚洲青草中文| 久久这里只是精品最新| 一级aa免费毛片高潮| 女人高潮流视频在线| 欧洲黄色精品视频一区| 一区二区三区四区视频在线观看| 99国产精品免费调教| 亚洲精品精华液一区二区天堂8| 国产理论片黄色一级录像片| 激情五月天丁香啪啪综合| 国产制服丝祙在线观看| 久久精品国产亚洲av高清y w| 囩产精品久久毛片完整版| 亚洲成人天天| 自亚洲国产品手机在线| 重囗sm在线观看无码| 免费看免费看A级长片变态| 欧美一级片丶日韩一级片| 精品国产亚洲综合一区| 日韩AV无码中文无码电影浪潮| 韩国一级无码片在线观看| 亞洲AⅤ無碼精品一區二區三區| 免费看大黄高清网站视频在线| 无码国产精品一区99久久久| 无码综合中文影视| 国产日韩av高清在线不卡| 人 成视频在线看| 国产乱人无码伦aⅴ在线a| 好男人在线社区www在线播放| 亚洲国产午夜视频在线观看| 亚洲真实娇小XXXX欧美| 精品三级久久久| 翟凌囗交全套高清视频在线观看| 亚洲A中文无码字幕色| 中文精品99久久国产香蕉| 真人作爱动动态试看视频| 2022无码在线免费| 欧美日本三级少妇三级久久| 免费毛片a在线观看手机| 海角社区在线第五页| 精品一区二区三区www| 一级特黄a视频大片| **字幕一区完整视频免费看| 亚洲欧美自拍henhen| 国产精品无码天天爽视频| 亚洲午夜视频一区二区精品| 黑人在日本免费网站一二区| 精品不卡毛片a在线| 99久久国语露脸精品国产| 日韩日批在线播放视频| 无码国产观看一二三四区| 国产精品99精品一区二区三 | 国产欧美日韩精品久久一区二区| 亚洲熟妇中文字幕色婷婷婷亚洲综合丁香五月 | \国产亚洲成?V人在线观看导航| 69国产精品久久一区二区夜夜嗨| 国产精品久久久久77777按摩| 777精品视频在线播放| 久久这里只是精品最新| 欧美日韩综合久久| 亚洲一区不卡免费| 欧美成人欧美va天堂在线电影| 国产精品无码免费专区午夜国模 | 久久精品日韩AV无码| 2020国产色在线观看| 亚洲欧洲日产国产最新| 午夜成午夜成年片在线观看| 自拍亚洲国产一区| 多人野外伦姧在线观看| 欧美三级大香蕉| 精品免费A片一区二区久久| 码粉嫩小泬无套在线观看| 日韩午夜福利一区视频| 免费AV禁片观看无毒不卡中文| 国产精品成人无码a片免费看 | 日本黄色大片久久| 都市激情一区伊人色网国产三p| 国产在线91青青青观看手机| 国产精品久久久久77777按摩| 亚洲欧美一区二区不卡国产传媒| 未满成年国产免费观看| 人人草视频在线| 色久人妻中文字幕| 日本三级网站视频一区二区三区| 欧美日本一道本一区二区| 无码高潮爽到爆的喷水视频app| 77777少妇AAAAA片毛片| 歐美婦女搡BBBB搡BBBB搡| 2020自拍视频在线观看| 人人草视频在线| 中文午夜乱理片无码AⅤ| 欧美3d汉化全彩3d欧美在线| 免费观看黄视频网站| 亚洲精品成人a| 精品视频在线观看免费中文字幕 | 国产午夜三级视频在线观看| 色多多成人版在线观看| 久久亚洲欧美国产精品观看| 午夜精品亚洲视频在线| 亚洲日本在线色播| 日本欧美不卡胖女人| 暗交小拗女一区二区三区图片| 精品一卡二卡三卡四卡免费| 亞洲A∨無碼一區二區| 免费观看在线视频黄片| 精品人妻福利一区| 蜜桃?v在线播放免费观看网站 | 欧美国产一区二区三区三州| 国产一国产一级秋霞片| 本地三级日本三级| 久热青青视频在线观看| 少奴人妻久久中文字幕| 国产精品视频亚洲深夜日综播放| 日本欧美不卡胖女人| 97人妻人人澡人人爽人国产网址| 日躁夜躁狠狠| 久久久噜噜噜久久久白丝袜| 成人国产一区二区三区精| 久久久久亚洲国产精品视频不卡AA免费看| 高清无码视频在线观看| 亚洲va一区动漫| 欧美午夜精品国产| 亞洲AV無碼成人專區片在線觀看| 国产美女精品黄片| 国产又粗又硬又大免费视频| 色视无码少妇AV片在线观看手機看片影視| 精品日韩在线视频一区二区| 在线播放亚洲欧美自偷自拍另类视| 成年午夜免费韩国做受视频| 2016无码狂乳乱人伦| 免费看片A级毛片免费| 日产粗又猛又爽又黄的色网视频 | 国产成人精品日本亚洲77美色| 国产放荡对白视频网站| 日韩av女同在线观看手机版| 无码综合精品影视| 亚洲av影视一区二区三区| 国产成人久久Av免费高清免费| 特级露脸av毛片| 啊啊啊啊在线91| 亚洲欧美日韩精品久久真绪 | 高清综合无码中文| 欧美精品久久久久久大尺度| 一本久道在线无码一区浪潮av| 99久久精品无码一区二区麻豆 | 激情毛片无码av专区| 超碰cao18随时屏蔽人人| 九九夜热视频这里只有国产中文精品| 最新中文av在线播放| 在线观看 日本一区| 久久久免费视频观看| 久久综合狠狠色综合宅男86噜| 丰满的东北熟女大屁股| 欧美日韩国产午夜福利| 午夜激情一级黄片| 亚洲欧美一区二区不卡国产传媒| 91在线视频在线观看| 国产成人精品亚洲曰本| 免费一级毛片观看| 久久精品国产在线观看| 国产成人久久精品一区二区三区欧美| 四虎影库在线观看| 亚洲丝袜制服欧美另类| 在线视频网站色秀视频| 精品国产一区二区三区久久狼| 国产911精品在线直播| 熟女乱人伦中文在线视频观看| 国语毛片免费一级高清视频| 国产成人无码?v片在线观看| 日韩人妻无码精品综合区| 亚洲最大激情综合| 中文字幕av美利坚合众国无码| 一区精品中文国产字幕| 一区二区三区国产乱码在线观看 | 国产高清精品福利| 国产精品三级影片| 日本精品久久一区| 99久久精品无码一区二区麻豆| 久久国产精品色香蕉91 | 国产 AV 仑乱内谢| 理论免费视频在线观看| 一级欧美AA片免费观看| 亚洲va欧美ⅴa国产va影| 国产又爽又猛又粗又色对黄| 亞洲歐美綜合區自拍另類| 久久午夜精品福利一区二区 | 亚洲和欧洲SM视频| 国产精品人成在线二区| 巨胸喷奶水视频www网站试看| 婷婷五月人人| 白嫩美女一级毛片免费看| 四虎欧美在线观看免费| 欧美老妇人XXXXX动态图| 91成人久久精品| 国产对白美女口爆吞精| 国产精品一区第二页在线观看| 国产日本三级片视频| 天天综合亚洲色在线精品| 99视频免费这里只有精品| 午夜精品视频一区二区三区| 欧美日韩国产日韩欧美一区| 欧美成人人在线免费| 国产成人久久Av免费高清免费| 日韩一区精品视频在线看| 亚洲伊人成综合人影院小说| PlX一439和讨厌的上司出差| 国产一区中文字幕在线视频| 人妻系列aⅤ无码久久免费| 国产拍拍拍无码视频免费| 国产愉拍刺激视频在线观看| 青青草视频无码在线免费播放| 精品国产高清一区二区三区| 国产免费网站看v片在线软件| 日本护士╳╳╳HD少妇苍井空| 日韩欧美精品一中文字幕手机免费播放| 精品乱码一区二区三四| 手机免费观看三级黄色毛片| 好硬好湿好爽再深一点m视频| 免费看黄?级毛片| 免费国产在线精品一区二区三区大| 淫语调教视频在线观看| 国产黄色片在线观看视频| 国产成人网站v片在线观看| 国产真实露脸无码不卡视频 | 强奷乱码中文字幕在线视频| 欧美电影亚洲电影一二三区 | 丰满的东北熟女大屁股| 国产午夜三级视频在线观看| 亚洲国产成人精彩精品在线观看 | 中文字幕AV毛片在线观看| 操他射他影院| 欧亚深夜成人福利久久| 国产亚洲曝欧美精品软| 五月综合激情婷婷| 6080新觉伦午夜中文字幕| 亚洲色图欧美一区二区不卡| 欧美毛多水多肥妇老妇人| 欧美电影亚洲电影一二三区 | 不满足人妻中文字幕| XXXX内射中国老妇| 久久一本久综合久久| 日韩 无码 精品 国产| 少婦無碼一區二區三區免費| 中文字幕一级特黄大片| 久久精品国产99久久72部| 精品无码秘人妻一区二区媚黑| 免费精品无码一级毛片| 野花香视频高清免费观看| 黄色软件在线看日韩视频一区| 亚洲狠狠一区二区三区| AV无码精品1区2区3区| 欧美V日韩V亚洲| 羞羞视频APP在线观看| 在线观看午夜福利视频| 97国产人人干人人色人人操| 亚洲第一福利网站| 香蕉久久国产超碰青草| 国产大尺度无码片在线观看国产三级片在线看 | 成年片色情大免费网站| 亚洲精品多人p群| 成人亂碼一區二區三區AV| 免费任你躁国语自产久久| 琪琪午夜理论片视频| 公天天吃我奶躁我的在| 91精品国产91久久久无码伦| 特黄aa级毛片免费视频播放| 亚洲日本一区二区在线尤物| 亚洲成a v人片在线观看| 成人性生交大片免费看9| 美女任你摸在线视频网站| 欧美成人精品第一区免费播放| 97人妻人人澡人人爽人国产网址| 日韩精品a免费一区毛片| 精品国产模特私拍视频在线| 日韩 无码 精品 国产 | 国产熟女真实乱精品| 中国~级免费毛片| 午夜在线视频国产极品片| 日本精品久久久久久久| 亚洲日韩欧美一区二区在线观看| 国产高清毛片69成人网| 美女高清视频一区二区三区| 拔萝卜免费高清视频播放下载 | 专区亚洲欧美日韩中文无v| 亚洲欧美日韩国产成人精品在线| 一级片毛片免费在线观看| 國產午夜三級一區二區| 亚洲国产青草uu1区二区三区| 国产成人尤物在线精品| 国产宅男宅女精品?片 | 国产盗摄视频手机在线| 日韩欧美果冻自拍| 国产99精品成人免费又粗又爽| 我扒开老师内裤我爽了一夜| 色香蕉视频在线观看| 乱色美www女麻豆| 欧美成人www在线观着| 我们免费观看亚洲无码视频| 久久精品国产99久久72部| 丁香色欲久久久久久综合网| 日韩激情不卡在线观看| 亚洲偷偷色无码中文字幕| 国产一区二区精品久久蜜柚| 在线看不用F载的黄色视频| 亚洲精品日韩丝袜| 99久久婷婷国产综合精品青草漫| 在线观看的黄片| 一区二区三区福利在线视频| 國產精品密播放國產免費看| 女高潮大叫喷水抽搐12| 短篇肉耽(h)男男| 午夜精品视频是一个直播平台| 丁香婷婷激情六月中文一区 | 国产真实交换配乱婬95视频 | 日本极品一区二区精子久久 | 国产香蕉精品视频| 亚洲乱码日产精品一二三| 欧美一级日韩| 玖玖精品中文字幕| 日韩亚洲成a人片无码| 亚洲AV无码成人精品区无码| 日韩成人精品毛卡片视频| 免费AV禁片观看无毒不卡中文| 精品视频国产毛片基地 | 无码人妻一区二区三区水牛网 | 女生越喊疼男生越有劲儿视频一个人看 | 国产片婬乱18一级毛片dvd| 亚洲老妇久久| 新婚少妇无套内谢国语播放| 欧美电影亚洲电影一二三区| 亚洲乱色一区二区三区| 人妻中文字幕一区二区不卡| 国产精品欧美一区二区浪潮| 日韩理论在线电影| 久久综合九色综合97飘花电影| ぱらだ天堂中文在线| 惠民福利国产精品亚洲综合一区在线观看| 亚洲女人被黑人巨大猛进| 亚洲综合欧美激情| 亚洲va中文字幕不卡无码下载| 精品人妻少妇丰满久久久av免| 可以直接看的网禁呦萝资源网| 国产成人羞羞视频网站在线观看| 做爰全过程免费无码的视频| 久久久无码少妇无码电影| 国产宅男宅女精品?片 | 韩AV片无码一区二区不卡电影 | 亚洲av无码成人动漫在线观看| 麻豆AV全片免费观看| 一本到高清DVD91日韩伦理影院| 一级特黄妇女高潮视的特点| 美女在线观看精品在线观看| 欧美高清在线播放一区二区| 久久久精品2019中文字幕超碰| 免费精品视频在线观看麻豆 | 欧美黑人人妻网站| 亚洲欧洲av一区二区在线观看 | 国产yw851.c免费观看网站| 香蕉视频久久婷婷| 国语自产视频在线社区| 日韩司机AV毛片| 国产精品婷婷| 成年无码专区在线蜜芽TV| 日韩精品人妻专区| 中国免费一级无码成人片| 欧美日韩高清交| 国产呦系列一区二区三区| av网站在线观看天堂| 欧美一二三区中文字幕| 久久综合九色综合97飘花电影| 高清影院在线欧美人色| 麻豆国产精品v?在线观看| 国产午夜精品福利久久网站 | 日韩精品一区二区三区播放| 人妻少妇精品视频一| 人妻无码不卡中文视频| 精品一级片内射视网站下载| 免费黄片全黄在线看| 中文在线人妻第三页| 2021无码精品视频| 国产亚洲视频精品播放器 | 国产日韩精品aⅴ一区二区电影| 99精彩国产在线视频| 欧美三级又大又粗又长| 一级搞av片免费观看| 亚洲色婷婷综合在线播放| 五十路人妻中出息子无码| av国产高清在线观看| 99精彩国产在线视频| 毛片黄色一级片免费的| 韩国美女真人性做爰| 日韩精品一区二区三区播放 | 国产高清一区免费视频| 日韩精品人妻系列成人网站| 欧美成人tv在线观看免费| 在线日本妇人成熟免费a√午 | 国产成人无码?v片在线观看| 亚洲人成亚洲人成在线观看 | 亚洲日韩一级精品片在线观看| 国产真实交换配乱婬95视频| 久久亚洲欧美国产精品观看| 日韩一线二线伦理片免费观看网页| 中文字幕在线一区二区三亚| 午夜两性无码小视频| 香蕉97超级碰碰碰碰碰久| 妓女精品国产噜噜亚洲av| 亚洲天堂av不卡| 日韩特黄特色大片免费视频| 国产定点盗摄女厕所系列18| 富二代精品自拍| 久草av免费福利资源| 國產成人精品視頻播放| 2020人人摸人人操| 韩国一级特黄大片在线观看| 日韩精品区一区二免费在线网| 免费无码高清视频| 亚洲成A∨人片软件| 欧美精品区一区二| 精品欧洲成Av人在线观看| 國產精品亞洲成在人線| 狠狠色噜噜狠狠狠7777米奇| 无码一区二区三区免费看视频| 亚洲激情一区二区三区视频| 白丝校花扒腿自慰网站| 手机看片国产在线播放| 欧美日本一道本一区二区| 色婷婷不卡一区二区粉嫩嫩| 国产一级二级三级毛片| 国产在线视频不卡香蕉| 亚洲一、二、三级片| 日韩成人无码毛片一区二区| 日韩欧美精品国产亚洲综合 | 国产初高中小泬视频| 欧美在线链接网址| 亚洲乱码国产乱码精品精男同 | 日本丰满大乳乳乳| 无码人妻精品一区二区三区99不卡视频| 国产乱精品女同自线免费高清| 亚洲AV午夜成人片性色A| 在线免费亚洲免费亚洲| 国产亚洲精品日日夜夜| 国产午夜永久网站| IGAO在线视频社区| 182tv免费视频在线观看高清无码| 欧美亚洲国产三级片子| 男攻打男受光屁股sp调教| 永久黄网站色视频免费视频| 91蜜臀人妻精品一区二区三| 亚洲偷偷色无码中文字幕| 国模沟沟一区二区三区| 麻烦中文进出社区久久久| 激情国产亚洲| 国产成人精品高质量| ?澚门久久精品| 国产精品欲色av夜夜嗨| 国产在线视频凹凸分类| 五月天综合网缴情五月中文| 亚洲av午夜精品三区| 久久精品成人无码Aⅴ片观看| 黄色片网站国产免费| 天天爱天天爽天天喊| 宝贝小嫩嫩好紧好爽h| 国产一区二区 国产精品| 国产小伙和50岁熟女| 国产成人午夜精品福利视频| 国产在线精品麻豆| 国产美女主播在线观看网| 久久久婷精品大色诱| 国产91在线网站福利| 香蕉久久精品国产亚洲| A级一级毛片免费| 在线观看男女羞羞视频网站| 日韩在线亚字幕精品| 欧美人牲交ā欧美精区日韩 | 免费看v片的网站| 91在线视频在线观看| 欧美v日本v国产v在线观看 | 就去干成人网| 亚洲毛片不卡av免费在线播放| 在线无码自拍流白浆| 无码国产观看一二三四区| 亚洲av无码成人动漫在线观看| 国产cd人妖在线播放| 亚洲精品成人久久久| 日日碰舔天天爽| 日韩三级视频网站在线播放| 亚洲一区二区色区| 北条麻妃肉丝袜办公室| 欧美成人www在线观着| 欧美日韩国产成人免费在线观看| 91精品久久久久久久无码口暴一区| 亚洲天堂在线看| 东京热久久无码视频| 亚洲日韩五十路熟女视频| 久久精品亚洲第一毛片| 国产三级精品三级av| 成人在线高清不卡免费视频| 国产精品午夜无码?V毛片| ciese熟女老女人hd视频| 玖玖精品中文字幕| 国产免费a∨在线播放| 亚洲乱熟女香蕉一区二区三区 | 精品久久久看视频 | 国产精品精品在线观看国产欧美日| 人人人97人妻交换视频| 波多野结衣在线无码播放中文字幕| 一级真人片国产真人永久在线| 日本日B視頻网| 少妇性l交大片免费看| 无码+调教+西瓜影音| 国产永久免费高清在线观看视| 四虎精品亚洲成人午夜影视| 男人桶女人到高潮30分钟动漫| 亚洲AV无码国产精品色字幕综合| 大香蕉一人久草| 性放荡视频在线观看播放| 挨操大鸡巴91免费看0| ?国产高潮对白刺激视频| 无码人妻精品中文字幕蜜臀 | 红杏亚洲影院一区二| 国产三级级在线电影| 一级aa免费毛片高潮| 中文字幕51精品乱码在线| 精品三级久久久| 天堂无码久久综合东京热| 哥哥舔我的胸嗯好爽高清播放| 内射人妻无码| 在线视频亚洲一区二区| 香蕉视频在线精品| 久久人妻区2区3网站| 久久精品免费看国产电影| 羞羞视频软件APP| 国产女人精品暖暖在线播放| 国产盗撮无码短视频| 看视频就上秋霞影视| 欧美高清猛少妇色xxxxx猛叫| 俄罗斯一级毛片真人免费视频| 王多鱼网站软件免费下| 国产日韩欧美一区精品| 日韩欧美高清老熟女免费观看| 不戴胸罩爆乳护士在线播放| 日韩欧美国产高清在线三区| 67914欧美成人特黄大片| 中文字幕麻豆| 亚洲老妇久久 | 自拍欧美在线综合另类| 久久青草费线频观看地址| 三级在线视频丰满熟妞区| 啊好痛嗯轻一点免费的软件| 国产熟女凹凸视频| 欧美日韩精品一区二三区在线看片| 国产A级黄色激情小视频| 中文字幕国产第一页| 亚洲日韩A∨无码久| 国产99精品成人免费又粗又爽| 一区二区三区免费毛片视频| 国产熟睡农村乱子伦视频| 亚洲欧洲视频一区视频在线观看亚洲一区 国产视频 | 国产老妇成熟xxxxx| 亚洲欧美人成综合在线| 精品一区二区三区久久精品无码| 2020国产色在线观看| 亚洲男人的天堂在线va | 影音先锋男士天堂资源站| 久久久人妻无码一区二区三区久久| 国产黄色片在线观看视频| 天天综合亚洲色在线精品| 国产高清天干天天美女| AV日韩A∨亚洲AV电影| 亚洲日韩αⅴ在线观看| 日韩午夜在线播放| 一级在线观看黄色片| 免费的黄色网直接看| 国产美女精品黄片| 亚洲a∨中文无码字幕色下药| 午夜成午夜成年片在线观看| 国产做A爰片毛片A片美国| 国产最新亚洲综合| 美女超黄视频国产| 无码av中文字幕剧情不卡| 97婷婷亚洲精品| 中文字幕人成不卡一区| 欧美国产日本在线91肉丝| 国产一区卡二区不卡三区高清| 中文字幕v亚洲ⅴv天堂| 久久久久久久这里只有精品偷拍厕拍视频| 日韩欧美精品国产亚洲综合| asian极品呦女中国| 青青热久免费精品视频精品| 91久久久久久无码精品国产 | ap片免费观看在线视频| 亚洲国产成人九九综合| 91视频男人天堂乐播| 亚洲成人毛片一区二区三区| 国产高潮久久免费观看| 欧美日韩综合新一区| 日韩视频第一页二页| 日韩一级一区二区| 欧美另类69xxxxx极品| 国产果冻豆传媒麻婆影片| 亞洲AV無碼成人專區片在線觀看| 亚洲欧美国产精品一区二区三区| 国产亚洲精品aaa在先线播放 | 中国女人内谢69xxxx视频软件短片| 国产一区卡二区不卡三区高清| 99热中文字幕在线观看| 国产欧美日韩综合视频在线看| 国产亚洲草草影院| 国产明星精品无码av换脸| 成人a毛片久久免费播放| 久久久精品亚洲人与狗| 亚洲毛片不卡av免费在线播放| 亚洲一区不卡免费| 九九99久久精品在免费线 | 国产真实迷jian系列在线网站| 一级a毛片中文字幕视频| 国产乱淫av片免费| 精品免费A片一区二区久久| 国内精品久久久久久影院8f| 首页国产人妻日韩制服| 北条麻妃肉丝袜办公室| 日韩欧美久久综合| 高清成年美女网免费视频| 日韩国语高清视频在线观看| 无码AV我不卡在线观看| 久久久久久久久无码精品亚洲日韩 | 插插视频无码一区| 亚洲av乱码一区二区三区涩涩| 日韩高清乱伦av字幕| 人妻少妇精品视频一| 国产精品白丝JK白袜喷水视频| 精品不卡毛片a在线| 手机免费观看三级黄色毛片| 性催眠师里番| 韩国三级高清中文字幕| 了解最新性做久久久久久蜜桃花| 亚洲最大尺度无码HD在线观看| 少女高清动漫在线观看视频| 欧美毛多水多肥妇老妇人| 亚洲国产另类一区二区三区| 免费不要钱的黄片软件| 欧美在线链接网址| 国产二区性生活视频| 亚洲第成色999久久网站| 丰满艳妇一区二区三区| 国产欧美中文字幕| 国产欧美精品一区二区久久久| 国产亚洲曰朝精品视频自拍| 人妻91久久一区二区三区| 87福利午夜福利视频少妇| 国产剧情91高颜值美女| 亚洲国内精品久久久久电影院| 久久午夜少妇无码| 国产成人在线观看电影| 香蕉视频黄在线观看| 久久午夜精品福利一区二区| 91成人Tv免费观看| 免费jizz在线播放视频| 亚洲成av人片看电影av| 欧美日韩精品一区二三区在线看片 | 少妇性l交大片免费| 亚洲无码国产精品久久不卡| 日日躁夜夜躁狠狠久久AⅤ| 精品久久久无码专区中文字幕国语| 操操操操操干干干干干| 亚洲av不卡在线看| 韩国一区二区三区无码| 波多野结衣中文字幕一区二区三区| 精品国产二区三区不卡毛| 日韩精品99视频| 手机中文字幕在线视频| 一区二区三区毛片观看| 特级毛片爽www免费版视频在线| 欧美日韩国产最新在线视频| 日韩欧美精品性久久| 人妻中文字幕在线| 24小时更新在线观看片| 国产熟女凹凸视频| 亚洲H成年动漫在线观看不卡| 久99久热只有视频精品| 日韩电影国产精品亚洲首页| 欧美va日本va亚洲ⅴa| 午夜男女成人免费爽爽影院| 曰批免费视频播放在线看片二| 亚洲欧美一区二区三区911精品| 成人国产欧美精品| 国产午夜三级视频在线观看| 超碰97人人操人人| 国产福利萌白酱精品一区二区| 中文字幕日韩高清版毛片| 国产乱人无码伦aⅴ在线a| 国产区精品区av片| 99er久久国产精品先锋| 在線觀看一區二區三區四區| 在线观看av的无毒网址| 少妇裸体正面牲交| 国产应用播放免费以及亚洲国产日韩 | 免费费一级特色国产黄色片 | 欧美成人aⅴ视频网站| 香蕉视频污在线观看| 日韩av高清在线亚洲专区| 欧美中文字幕一区二区三区网站| 国产成人精品77上位| 在线a免费播放a视频| 国产亚洲一二三| 欧美日韩一区日本成人一区二区| 久99re在线观看视频96| 日韩欧美在线上播放| 亚洲色图欧美一区二区不卡| 波多野结衣在线一区播放| 久久99国产综合精品免费麻花 | 最新中文字幕高清一区二区三区| 日日夜夜爽歪| 久久亚洲欧美国产精品观看| 久久久久久国产精品无码| 精品长泽梓在线播放视频| 不卡老色王av综合| 欧美一级片丶日韩一级片| 日产粗又猛又爽又黄的色网视频 | 你想要的我都给你→久久99亚洲高清观看 | 国产一区在线观看免费视频| 国产精品欧美一区二区浪潮| 久久中文字幕国产熟女| 欧洲av无码乱码国产精品麻豆 | 亚洲乱码中文字幕综合| 无码在线观看国产| 老欧性老太色HD大全| 欧美影视国产综合| 成人一区二区三区国产| 粉嫩小泬久久久一区二区| 黄片免费黄片在线一级观看 | 国产亚洲一区电影在线观看| 麻豆国产福利91在线| 欧美高清在线播放一区二区| 最新国产成人盗摄精品视频| 国产推油久久99久久99| 女人高潮流视频在线| 黑帮大佬和我的365日第2季| 538prom国产在线视频一区| 国产黄色毛片网站| 久久综合色老色| 韩国三级高清中文字幕| 香蕉视频黄在线观看| 教室脔到她哭h粗话h好爽视频| 韩国精品无码一区二区三区不卡| 粉嫩粉嫩毛片视频| 啪啪亚洲一区二区三区| 欧美影视国产综合| 国产成人亚洲精品另类无码 | 欧美一区二区vixen| 男女爽爽无遮挡午夜视频在线观看| 在线观看的黄片| 在线观看日韩免费激情视频| 日本不卡高清激情视频| 欧美人牲交ā欧美精区日韩| 成人爱在线免费视频| 国产精品一区第二页在线观看| 欧美激情另类综合国内| 国产一级视频在线免费看| 健身房h人妻h短文| 无码人妻精品中文字幕蜜臀| 亚洲精品天堂无码中文字幕 | 精品少妇avav免费久久久| 久久高清精品久久| 久久久波多野结衣av一区二区 | 国产精品老熟女50p| 亚洲乱码日产精品一二三| 看国产成视频在线观看| 国产一区午夜激情| 91欧美午夜精品| 少妇性色午夜婬片aaa片软件| 亚洲一区二区免费在线| 欧美黑人一区二区久久久| 野外打野真实视频大全| 无码少妇A片一区二区三区| 在线观看腿交射精无码av| 免费天堂无码成人AV电影| 99精品一区二区三区无码吞精茶 | (凹凸視頻)国产99久久久国产精品成人| 白丝校花扒腿自慰网站| av网站在线播放不卡| 久久国产精品无码超碰| av天堂最新手机网址无码窝| 亞洲歐美綜合區自拍另類| 欧美日韩成人免费网站| 噜噜噜狠狠夜夜躁精品| 性做久久久久久坡多野结衣| 国产日韩污视频在线观看| 91精品人妻久久久一区二区| 一区二区美女视频免费| 亚洲乱熟女香蕉一区二区三区| 欧美V日韩V亚洲| 无码成人免费全部在线观看| 国产三级级在线电影| 欧美怡红院色网视频| 侵犯人妻女教师中文字幕| 久久久亚洲av成人无码精品网站| a一級毛片視頻免費看| 日韩欧美久久综合| 伊人久久大香线蕉亚洲五月天| 国产精品成人免费视频网站京东| 日韩AV影院播放| 国产三级漂亮护士和医生上班| 欧美高清成人| 中文字幕亚洲乱码女一区二区| 日韩一区二区二区| 久久精品夜色噜噜亚洲α∨| av天堂最新手机网址无码窝| 亚洲欧美日韩狼人射| 在线观看理论电影播放网址大全| 97国产人人干人人色人人操| 欧美一级人片内射| 超碰97在线线播放| 人人草视频在线| 岛国午夜福利一区二区| 亚洲一区精品无码色成人| 亚洲A中文无码字幕色| 国产一级视频在线免费看| 免费无码婬片AAAA片直播| 国产精品无码6080| 亚洲国产丝袜美腿在线播放| 午夜视频在线观看网址水蜜桃| 一区二区三区电影乱码在线观看| 狠狠综合久久亚洲电影| 99久久国产综合精品无码9| 亚洲视频一区二区三区在线观看| 最近最新高清中文字幕mv在线| 惠民福利亚洲AV无码乱码在线观看| 久久青青草原精品资源| 成人毛片免费观看视频大全 | 精品成人一区二区在线| 在线日本妇人成熟免费a√午| 欧美一卡2卡三卡4卡无卡| 人人免费人人看| 亚洲第一天堂色页| 91精品国产麻豆国产| 欧美高清成人| 国产大黄鸭手机在线播放| 中文字幕AV毛片在线观看| 中文字幕无码色综合| 久久久免费不卡av二三| 青青热久免费精品视频精品 | 亚洲欧美日韩一区丝袜| 亚洲18免费在线视频| 好满射太多了装不下了短视频| 国产亚洲曰朝精品视频自拍| 一区二区三区四区视频在线观看| 久久久久久免费视频观看| 中文日产幕无线码一区2021| 中文字幕制服在线一区| 成人a毛片久久免费播放| 国产精品成人毛片| 久久久婷婷婷亚洲五月激情| 亚一亚二国产专区| 2021国产精品一区二区22| 2o2o精品国产色在线| 国产高清黄色免费小视频| 狠狠色综合网站久久久| 中文字幕在线观看日本片| 免费看理论片中字国产| 日本久久亚洲激情| 最新日本黄色视频网站| 古代一级无遮A级毛片| 国产精品久久久久77777按摩| 亚洲av永久无码区成人网站 | 国产特黄无码毛片| 91粉色视频在线观看| 99精品产国品一二三产区| 男生和女生一起差差差的app| 麻豆国产av巨作国产剧情| 国产日韩精品一区在线播放| 日本福利视频一区| 亚洲国产精品中文字幕一区| 国产剧情在线二区| 精品国产三级网址| 欧美zooz人禽交免费观看| 夜色国产精品视频| 性夜黃a爽爽免費視頻國產| 丁香色欲久久久久久综合网| 国产精品毛毛在线播放| 无码国产精品一区二区免费3p| 亚洲欧洲日产国码小说| 久久夜色精品国产网站免费 | 日本乱人伦中文字幕三区| 国产乱码精品一区二区三区免费| 美女禁区A级全片免费观看| 老司机试看午夜| 色婷婷五月综合激情在线观看| 高清国产免费观看视频在线| 国产av一啪一区二区| 亚洲综干区人人福利| 国产精品9999久久久久不卡| 国产精品一区二区嫖妓熟女| 无码高清影视国产| 国产真实高清无码在线| 秋霞手机影院亚洲无码| 青青青草最新免费网站| 亚洲国产精品无码久久久五月| 亚洲综合中字无码播放| 国产女王免费区视频| 精品国产成人亚洲午夜| 埃及艳后荒淫史一级毛片在线 | 在线亚洲av波多老师丝袜观看| 国产乱伦麻豆视频| 少女高清动漫在线观看视频| 国产欧美又大又粗的视频| 日韩国产欧美卡通动漫| 无码人妻一区二区三区水牛网 | 欧美日韩国产成人免费在线观看| 他用嘴让我高潮了十次| 在线视频亚洲一区二区| 中文字幕aⅴ在线视频| 一日本道久久综合亚洲精品| 成长影院在线播放视频| 亚洲AV综合色区无码一区精品| 美妇紧致吞吐粗长巨物| 久久精品亚洲热综合一区二区| 欧美粗大猛烈水多18p| 亚洲三级电影av| 少婦無碼一區二區三區免費| 国产最新精品亚洲不卡| 全黄h全肉边做边吃奶视频| 黄污片app成人深夜| 欧美三级在线观看网站| 91久久综合精品国产丝袜长腿| 三级免费亚洲欧美| 亚洲韩国日本三级在线观看| 老师太深了要坏掉了h| 日韩A级毛片直接进入| 亚洲精品成人a v久臂桃| 高潮潮喷精品在线| 欧美性开放大片福利免费观看| 亚欧国产日韩欧美在线观看| 欧美变态杂交在线看| 国产精品99久久久久久| 有色又爽又黄的视频在线观看| 亚洲七七久久综合影| 日韩成人影院日欧毛片| 国产福利高清在线一区二区| 亚洲精品日韩丝袜| 韩国无码一区二区三区| 在线观看美女裸体视频无马赛克| 91精品国产自产拍在线观看| 欧美久久一级精品| 日韩精品一区二区在线观看| 亚洲日本高清在线| 亚洲可干人妻中文字暮| 精品国产最大的调教网站| 国产人成无码视频在线观看| 久久网站苍井空免费av片| 亚洲.欧美.中文.日韩AⅤ | 欧美精品高清乱伦| 欧美一级日韩| 人妻无码视频中文字幕色| 日韩剧场人妻中文字幕| 女警察双腿大开呻吟| 国产最爽的乱婬视频国语对白A级| 日本不卡一二视频| 欧美亚洲综合久久99成人| 影音先锋亚洲av熟女少妇| 国产精品毛片av一区二区不卡| √天堂资源中文最新版地址在线| 欧美在线精品一级国产| 国产成人91精品免费看片快| 无码一区二区三区春药| 天天天色天天色| 国产一区二区三区试看| 久久精品国产99久久72部| 国产成人v?亚洲电影| 国产超级婬乱av片免费看| 91无码在线高潮喷水观看| 清纯校花受辱沦陷记h陈若雪 | 91在线国产直播在线| 欧美精品久久久久久大尺度| 欧美在线观看网址| av性情网站在线观看| 国产成人av高清免费观看在线| 精品日国产av自拍| 日本免费h视频在线观看| 日韩欧美制服啪啪啪| 大战白嫩一区在线播放| 成人性生交免费观看视频| 久久er视频精品在线99| 日韩精品国产专区| 性figb78欧美暴力猛交69| 国产成人精品月日本亚洲语音| 日本黄页在线观看免费| 三年片在线观看免费观看大全全集完整版在线播放 | 欧美一卡2卡三卡4卡无卡| 成人午夜在线看片| 一色桃子中文字幕人妻熟女作品 | 黄网站免费看| 特级毛片a级毛片免费播放100 | 色又黄又爽禁免费网站在线观看 | 久久久丰满人妻一区二区三区| 精品久久网站| 欧美一区二区三区四区性视频| 成年免费a级毛片∴| 91精品国产一区二区三竹菊影视| 精品视频在线观看一区| 夜夜嗨色综合AV麻豆精品| 日韓豐滿少婦無嗎視頻激情內射| 亚洲综合欧洲国产精品区| 久久69精品久久久久久| 日本少妇一级婬片HD69网站| 亚洲精品日韩丝袜| 清纯校花受辱沦陷记h陈若雪| www成人国产在线观看网站| 午夜国产美女| 亚一亚二国产专区| 午夜激情在线一区在线视频精品无码| 色综合久久久久8天国| 国产日韩网红视频在线观看免费网站| 无码在线观看中文免费| 精品国产最大的调教网站| 欧美日韩成人免费网站| 久久一区二区a级片免费观看| 日韩亚洲欧美一级一区有码| 黑人入室强丰满人妻| 中文日产幕无线码一区2021| 国产成人A在线观看视频免费| 精品国产三级av无码不卡| 香蕉视频污在线观看| 欧美专区一区二区三区| 天堂中文8资源在线8国内精品视频在线| 亚洲欧洲日产最新aaav毛P一区| 国产精品99+久久精品| 在线观看午夜福利视频| 亚洲国产视频91在线| 日本黄色高清视频一区 | 欧美一级片丶日韩一级片| 国产午夜精品福利久久网站 | 清纯校花受辱沦陷记h陈若雪| 久久水蜜桃精品一二区| 国产精品久久久亚洲第一牛牛 | 精品国产乱码久久久久久红粉| 色又黄又爽禁免费网站在线观看| 国产ts在线观看视频免费观看| 91久久久久久无码精品国产| 69堂无码国产精品色四婷婷专区| 亚洲偷偷色无码中文字幕| 91视频男人天堂乐播| 韩国r级理论片在线观看| 欧美vr高清区在线观看| 88AV在线视频观看| 女人髙潮特级AAAA级| 日韩成人性视频| 黄色片网站国产免费| 免费特级一级作爱片| 国产视频一区二区三区观看| 三级伦理高清在线播放| 欧美日韩久久国产一区二区三区| 女人高潮流视频在线| 车颠的越快进的越深h| AV永久精品成人尤物| 久久精品人妻少妇一二三区| 亚洲国产成人久久精品导航| 亚洲无码人妻av| 中文字幕在线亚洲日韩一页| 菠萝菠萝蜜在线观看视频社区| 国产精品亚洲aa综合aa国产| 国产精品香港三级国产αV| 国产偷2018在线观看大全| 欧美一区二区不卡视频| 暗交小拗女一区二区三区图片 | 亚洲国产日韩欧美高清不卡| 亚洲精品成人a v久臂桃| 国产精品三级在线精品| 欧美607080老太完整版| 久久无码一区二区爽爽爽| 午夜福利国产精品免费| 亚洲乱码国产乱码精品精男同 | 国产精品丝袜自慰在线观看| 欧美男军人同性videosbest| 搞中出视频在线观看| 坐在他的腿上把内裤蹭到一边 | 亚洲AV无码国产精品色字幕综合| 亚洲伊人成视频在线观看| 久久综合亚洲色一区二区三| 欧美成人全部的免费网站| 男女羞羞视频免费在线观看网站 | 欧洲三区四区乱码网址| 欧美一区二区不卡视频| 草莓污视频深夜释放| 在线精品无码免费一区二区| av网站在线观看天堂| 欧美重囗味sm群虐视频| 9l国产精品久久久久尤物| 黄色亚洲一区| 国产熟睡农村乱子伦视频| 国产高清天干天天美女| 日韩精品免费一线在线观看| 中文字幕日韩三级片av| 亚洲乱码国产乱码精品精男同| 国产又粗又猛视频| 青青国产一区二区三区在线观看| 欧美制服丝袜中文字幕在线| SSNi一158完全紧缚| 国产无码在线观看免费视频| 亚洲av成人亚洲| 国产高潮白浆毛片aaaa| 欧美电影亚洲电影一二三区| 一本大道香蕉久97在线视频| 强壮的公弄得高潮HD| 国产成人综合亚洲精品精华液第一页| 久久精品成人无码Aⅴ片观看| 欧美日韩国产综合人成| 在线观看男女羞羞视频网站| 国产探花无码视频在线观看| 国产AV久久人人澡人人爱| 国产综合成人一区二区| 色777在线观看女人视频| 欧美午夜精品精品一区| 伊人五月丁香综合aⅴ| 人妻中文字幕一区二区不卡 | 67914欧美成人特黄大片| 久久久久国产色精品综合AV| 他用嘴让我高潮了十次| 国产高清成人大片| 十九岁日本电影免费粤语| \国产亚洲成?V人在线观看导航| 欧美特黄一级高清免费的香蕉 | 人妻中文字幕在线| 精品国产最大的调教网站| 少妇无码专区免费无码视频| 激情婷婷丁香五月| 手机在线看片 你懂的| 又污又黄无遮掩的网站 | 搞中出视频在线观看| 3d动漫精品一区二区三区| 色四月婷婷网五月天在线观看 | 亚洲免费观看黄色网| 国产视屏一二三好色妞网在线视频| 我要看a级毛片| 亚洲精品成人app| 日韩人妻OL丝袜AV一二区| 欧美日韩狂热免费高清视频| 国产成人精品一区二区三区在线观看 | 国产高清国产精品国产k| 国产h片在线观看免费| 中文字幕人妻美腿丝袜乱一区三区| 亚洲欧美日韩综合网在线| 天天影视色香欲综合网338| 波多野结衣中文字幕一区二区三区 | 麻豆国产区精品系列在线| 最近欧美日韩中文字幕| 三级免费动漫电影在线观看 | 娇妻被老头玩弄hd在线观看| 国产ts紫迹在线观看| 国产一区中文字幕在线视频| 黄页免费在线观看日韩| 2021国内精品久久久久| 无码毛片高潮一级一级喷水黑人| 国产在线 欧美日韩| 亚洲一级精品无码桃花av| 日韩最新AV资源网站| 中文在线观看亚洲| 欧洲精品久久久āv无码电影 | 视频福利一区二区三区| 2020人人摸人人操| 精品日本三级在线观看视频| 无码精品人妻一级淫乱性爱大战| 91在线国产视频观看| 亚洲精品婷婷综合| 胖老太与人牲交BBWBBW高潮| 干我啊啊啊视频黄色国产在线观看| 日本精品久久久久| 亚洲国产精品成人精品无码区蜜臀| 做爱视频无遮挡网站免费观看 | 久久综合狠狠色综合宅男86噜| 91午夜精品免费视频| BBWHD老太大欧美| 日韩无码高清视频专区| 97国产高清视频不卡| 久久久婷精品大色诱| 亚洲色婷婷综合在线播放| 亚洲精品老司机调教美女| 亚洲最大激情综合| 手机免费观看三级黄色毛片| 边做饭边被躁我和邻居动| 日韩最新av在线网站| 干女人逼很爽的视频| 成人午夜激情视频| 国产啪亚洲国产精品| 欧美在线一二三| 亚洲成年人在线观看| 国产有码视频三级玖玖中文| 成年免费a级毛片∴| 亚洲精品午夜一区二区三区| 草民午夜理伦三级| 久久成人+一区+二区| 性欧美俄罗斯乱妇| 国产制服丝祙在线观看| JK加白丝袜高潮喷水| 亚洲精品无码?V天堂久久| 黄色一级在线网站| 麻豆国产福利91在线| 国语毛片免费一级高清视频| 香蕉久久夜色精品国产尤物| 久久中文字幕不卡高清| 亚洲欧美综合图区18p下一页| 久久精品国产72国产精#| 热视频观看在线 伦| 精品高清欧美日本| 国产日韩网红视频在线观看免费网站| 亚洲国产激情黄片| 中文字幕无码日韩| 免费的三及片国产中文欧美 | 欧美精品高清乱伦| 日本一区二区三区dvd视频在线 | 國產亞洲產精品久久久| 国产无套露脸在线播放| 国产精品青草视频免费播放| 精品日韩在线视频一区二区| 国产精品三级影片| 欧美日韩色欲一区二区| 系列美乳美乳熟女精品性色精品| 日本韩国久久精品| 亞洲國產精品一區久久AV| 蜜桃视频成人版在线观看免费| 成年奭片免费观看午夜网站| 国产区精品一区二区三区| 亚洲?v无码不卡一区二区三区| 国产多人夫妻高清一区二区| 女人与公拘交的视频网站| 精品歐美激情在線看| 最新老熟女AV导航| 国产白丝精品爽爽久久蜜臀 | 日本一区二区在线视频国产| 国产精品综合视频一区二区三区| 亚洲午夜精品无码专区在线观| 51视频精品全部免费永久| 亚州中文一二三四精品久久| 亚洲熟妇无码一区二区三区导航| 国产美女主播在线观看网| 欧美日韩免费中文字幕高清专区不卡| 亚洲专区首页在线观看| 91成人久久精品| 久久综合九色综合影院| 色综合久久88一加勒比| ?愛妃?亚洲码国产精品高潮在线| 亚洲五月丁香激情久久不卡| 日韩精品中文字幕在线播放 | 久久久久久久综合网| 美女任你摸在线视频网站| 第一视频区亚洲日韩| 嫩草网站~懂你的网站| 国产精品视频亚洲深夜日综播放 | asian极品呦女中国| 国产三级av在在线观看网站 | 中文字幕日韩高清版毛片 | 日韩激情视频网站欧美专区在线观看 | 免缓冲亚洲性爱视频| 在线观看理论电影播放网址大全| gogogo高清免费观看日本TV | 黄品汇mba轻量版| 日韩欧美在线上播放| 国产不卡一区二区中文| 亚洲a∨中文无码字幕色下药| 欧美三级在线观看网站| 色欲av蜜桃一区二区三| 青青青欧美视频在线看| 无遮挡男女啪啪成人免费软件| 精品综合三级欧美国产| 500水多多视频导航| 9l国产精品久久久久尤物| 国产成人av综合| 亚洲一二三四区无码在线∴ | 精品久久久片| 最近免费视频中文2019| 在线观看AV片国产| 亚洲AV综合色区无码一区精品| 少妇裸体正面牲交| 一级毛片在线播放免费看| 成人国产亚洲日韩欧美亚州| 亚洲国产韩国久久| 超碰中文字幕人妻导航| 黄色网页在线| 玖玖资源站无码专区| AV无码精品1区2区3区| 日本三级网站视频一区二区三区| 亚洲美女在线免费视频| 国产亚洲另类无码专区国语| 最新老熟女AV导航| 99久久婷婷国产簧片综合精品| 五月综合激情婷婷| 在线观看日韩亚洲| 日本免费h视频在线观看| 99热中文字幕在线观看| 日韩AV无码中文无码电影浪潮| 18禁喷水流白浆自慰视| 99视频免费这里只有精品| 日本黄页在线观看免费| 92精品国产自产在线观看481| 久久久久黄色三级毛片| 伊人直播APP污版下载安装| 欧美一区二区三区亚洲| 中文字幕日韩高清版毛片| 欧美激情做爰视频在线| 久久精品国产在线观看| 欧美老妇乱人伦a片精品| 欧美一级人片内射| 歐美亞洲國產激情一區二區| 香蕉视频在线精品| 84aaa在线观看视频福利| 欧洲a老妇女黄大片| 女人国产香蕉久久精品亚洲vr| 日日碰舔天天爽| 亚洲日韩五十路熟女视频| 99精品国产自在现线影音先锋| 国产午夜精品8mav在线观看| 日韩美a一级毛片无码| 国产一区二区与动漫av| 一区二区三区日韩免费| 成人国产一区二区精品 | 国产美女精品视频第一页| 2020最新无码福利视频| 最新国产在线视频不卡a| 久久精品国产72国产精#| 精品一区二区三区www| 特黄特黄欧美亚高清二区片。| 日韩无国内精品| 亚洲欧美成?ⅴ人在线观看| 黄色一级久久毛片| 中文字幕在线岳| 國產92精品一區二區麻豆網站 | 免费日韩欧美在线观看| 啊啊啊啊在线91| 四虎精品亚洲成人午夜影视| 日韩高清亚洲日本人| 日本免费一区二区三区激情视频| 一区二区三区日韩免费| 免费黄片全黄在线看| 深夜國產成人福利在線觀看女同| 天堂俺去俺来也官网| 成人免费av在线| 国产无遮挡吃胸膜奶免费看精品一区二区视频免费观看 | 精品无码一区二区在线观看| 中国少妇人妻xxxxx| 欧美福利视频二区| 国产人成无码视频在线观看| 欧美一级aaaaaa黄片| 久久成人+一区+二区| 国产乱女婬?V麻豆国产| 国产精品无码免费专区午夜国模| 综合自拍亚洲综合图区高清| 了解最新国产www在线播放| 扒开双腿疯狂进出爽爽爽视频免费| 健身房h人妻h短文| h漫无码精品无修在线观看| 欧美性开放大片福利免费观看| 国产午夜精品理论| 啦啦啦啦视频在线播放免费观看www无码 | 中文字幕在线观一二三区| 欧洲av无码乱码国产精品麻豆 | 又爽又黄又屋遮挡的视频| 色欲av蜜桃一区二区三| 特黄特黄欧美亚高清二区片。| 久久国产尤物麻豆名媛| 亚洲精品国产精品粉嫩av| 亚洲国产新在线观看| 先锋影音超碰在线| 无码之国产精品网址蜜芽| 国产精品毛片va一区二区| 亚洲av无码成人福利在线| 日本亚洲欧洲激情| 国产在线成人观看.www| 國產午夜三級一區二區| 久久久久久牛| 波多野结衣av一二三区| 51无人区码一码二码三码| 91蜜臀人妻精品一区二区三| 日韩激情在线观看91| 国产明星精品无码av换脸| 国产一级特黄aa大片爽| 日本黄色高清视频一区| 正在播放另类视频| av在线人妻无码一区| 国产初高中小泬视频| 综合国产三级免费| 国产制服丝祙在线观看 | 午夜欧美激情| 亚洲高清人妻无码aⅴ不卡中文字幕| 亚洲综干区人人福利| 在线观看黄片视频| 97国产精品午夜福利| 国产欧美日韩中字亚洲| 国产又色又爽又黄的视频在线| 日本h片无遮挡在线观看| 做暖暖爱视频免费视频网站| 亚洲国产大片久久久久久| 精品高清欧美日本| 欧美男军人同性videosbest| 国产天堂视频一区二区三区| 18禁无码免费高黄肉网站| 天堂VA在线观看视频| 国产成人亚洲精品另类无码 | 亚洲国产精品黄片| 人人骚天天日夜夜欢| 91tv成人精品人妻91资源| 综合激情青草自拍| 久久最近中文字幕视频高清| аⅴ中文在线天堂| 欧美日韩一区二区网址| 欧美一区二区三区四区性视频 | 欧美性爱男人天堂| 日韓福利視頻高清免費看| 18精品一级做a爱片久久毛片| 精品久久久久亚洲av| 99re这里都是精品视频在线观看| 国产男女免费视频在线观看| 国产福利一区二区在线精品| 一牛影视久久久久一区二区| 白洁少妇做爰1~5| 日本巨大超乳在线一本| 2016无码狂乳乱人伦| 美女在线观看精品在线观看| SSNi一158完全紧缚| 久久免费福利视频| 日本一区二区三区dvd视频在线| A级全黄试看30分钟小视频| 日产粗又猛又爽又黄的色网视频| 18岁女下面不断高潮视频| 丰满迷人的少妇无码| 成人免费av在线| 香蕉视频在线精品| 国国产精品三区四区老阿姨| 久夜人成网站免费看| 亚洲18免费在线视频| 欧美猛男军警gay自慰| 亚洲无码电影等最新內容| 曰批全过程免费视频下载在线播放| 欧美国产一级毛卡片免费| 丰满白嫩人妻中出无码| 婷婷激情就去吻亚洲综合在线播放| 在线亚洲黄色毛片| 午夜无码网站| 免费人妻av无码专区| 中文无码第3页不卡av| 久久一日本道色综合久久大香| 深爱激动情网狠狠五月天| 不卡在线天然素人无码互添| 六月丁季色欲Aⅴ| 中文字幕婷婷综合| 人妻少妇资源在线| 青草青视频在线观看| 最新97国产自在线拍视频| 日韩高清无码mv专区一二三区| 欧美日韩一区二区乱码| 日韩亚洲?V人人夜夜澡人人爽| 免费看一级a一级久久 | 日韩欧美亚洲中文乱码| 久久久不卡国产精品一区二区| 在线观看黄片视频| 国产真实二区一区在线亚洲| 男人天堂网在线播放| 男女啪啪永久免费观看网站 | 國產精品亞洲歐美一區麻豆| 92精品国产自产在线观看481 | 美妇紧致吞吐粗长巨物| 国产麻豆av一区二区三区| 無碼人妻av免費一區二區三區| 成人无码特黄特黄av片在线| 色噜噜一区二区视频| 久久精品男人影院| av手机天堂在线版| 亚洲手机在线日本一二区三区| 嘿嘿视频在线观看 成人| 国产成人精品亚洲曰本| 98国产丝袜在线视频| 八戒八戒神马影院免费www| 中文字幕在线观看日本片| 成人视频免费在线观看| 91在线国产视频观看| 精品人妻无码一区二区视频黑人 | 中文字幕无线码一区精品| 深夜福利无码极品| 亚洲日本中文字幕在线播放| 精品少妇av无码免费久久| 成人免费永久在线观看视频| 久久夜色tv网站| 精品无码一区二区三区电影| 亚洲国产日韩一级精品视频网站| 日韩乱码人妻无码中文视频| 被陌生人带去卫生间啪到腿软| 国内精品久久久久久影院8f| 一级国产精品αv| 手机在线看片 你懂的| 国产精品xxxx国产喷水| 国产性感美女一区二区| 網友分享日本黄色不卡视频心得| 日韩欧美午夜视频| 99re66热这里只有精品首页| 一区三区在线专区在线| 在线精品无码免费一区二区| 草莓视频18在线| 无套乱子伦精彩是白视频| 久久人妻无码毛片a片麻豆潘金莲| 99re6热这里只有精品首页高| 国产精品大陆第一页 | 了解最新99精品久久精品一区二区 | 亚洲欧美影音先锋| ?愛妃?亚洲码国产精品高潮在线| 国内精品久久国产大陆| 日韩A级毛片直接进入| 97色综合久色aⅴ中文| 一级欧美AA片免费观看| 露脸极品女神在线视频| 淫语调教视频在线观看| 2019最新中文字幕| 亚洲综合中字无码播放| 91久久久久久无码精品国产| 在线观看第一页AV| 亚洲欧美日韩看国产| 九九国产精品视频播放| 麻豆国产精品v?在线观看| 中文字幕亚洲一区成人免费观看| 免费人成观看在线网| 欧美国产在线播放日韩| 午夜福利久久一区| 欧美dvd一本道无码免费三区| 欧洲一级精品毛片大全| 美女的大胸又黄又www又爽| 男人的天堂精品一区二区在线| 亚洲欧美精品社区| 老司机试看午夜| 日韩无码啪啪啪视频| 韩国一级无码片在线观看| 黄色在线观看视频| 无码一区二区三区免费看视频| 亚洲色无码国产精品网站| 双性美人哭唧唧喷水| 精品99国产一区二区三区| 国产伦一区二区三区免费观看| 与隔壁清纯人妻肉干到爽| 午夜午色在线好看无码少妇| 亚洲激情一区二区三区视频 | 熟透欲妇丰满中文字幕| 日本成本人片免费久久| 欧美综合高清在线观看| 国产日韩欧美校园在线| 在线欧美日韩国产一区二区的| 操操操日日日干干干| 无码毛片高潮一级一级喷水黑人| 惠民福利久久精品国产亚洲AV无码娇色| 精品自拍三级影视| 日韩乱码人妻无码中文视频| 中国xxxx高清一区| 久久精品国产亚洲?V高清色欲| 久久久久久麻豆精品| 午夜视频一区二区免费久久 | 日韩一线二线伦理片免费观看网页 | 久播影院中文无码| 有色又爽又黄的视频在线观看| 在線觀看精品國產福利片100| 中文字幕高清乱码一区| 午夜精品久久中宇午夜精品| 看欧美日韩国产一区二区在线观看| 亚洲国产成人爱av在线播放| 无码蜜臀av午夜福利久久| 轻点灬大JI巴太粗太长了A片| 东京热一区二区三区欧美日韩| 天天在线中文无码视每天大量更新 | 天天超级碰国产精品视频| 99热这里只有精品超碰97| 99er久久国产精品先锋| 久久最新国产刺激| 一捏胸一边打扑克全程视频| 国产一区卡二区不卡三区高清| 免看一级a一片视频| 无码成人免费全部在线观看 | 欧美亚洲日本成人在线播放| 久久无码一区二区三区WWW| 亚洲人成网站在线无毒不放| 97视频在线二厂| 久久综合国产精品视频成人无码 | 无码春药按摩中文字幕| 小蝌蚪app无限观看污免费| 97婷婷亚洲精品| 久久久久綜合一本久道| 美女mm131爽爽爽试看三分钟 | 国产精品户外野外亚洲AV成人精品毛片| 色以综合久久综合| 一二三四高清免费色网视频| 日本三级视频在线| 国产黄a三级三级三级视频| 无码国内精品麻豆久久人妻| 国产美女精品视频第一页| 国产三j片手机在线观看| 亚洲国产第一区二区香蕉日日!| 久久久久国产精品二国产| 久久久精品情趣视频| 亚洲国产日韩一级精品视频网站| 人人人97人妻交换视频| 97一区二区三区| 人人骚天天日夜夜欢| 国产精品久久久久久av下载 | 老司机久久东京热一道本无码| 欧美久久久久久性生活| 98国产丝袜在线视频| 中文字幕日韩高清版毛片| 国产精品sss在线观看av| 草莓美女视频高清在线观看| 黄色不卡在线视频| 丁香五月另类色婷婷| 免费成人网站在线观看| 精品久久久久久久蜜桃| 少妇做爰XXXⅩ性视| 日本道綜合一本久久久88| 无码中文人妻字偷2020| 八个黑人操一个白人视频在线观看| 9l国产精品久久久久尤物 | 国产原创中文字幕在线观看| 日韩高清亚洲日本人| 看欧美日韩国产一区二区在线观看| 富二代精品自拍| 亚洲最大无码| 一色桃子中文字幕人妻熟女作品| 亚洲AV永久无码国产精品久久| 另类视频在线观看| 国产成人无码久久一区二区| 国产真实熟女被爆| 国产一区二区三区视频在线播放| 一级做a爰片性色毛片思念网| 成人午夜在线看片| 亚洲一区成人免费视频| 日本一区二区在线视频国产| 老司机一区二区免费视频| 久久精品夜色噜噜亚洲| 91新视频一区二区三区| 国产亚洲一二三| 中文字幕亚洲乱码女一区二区| 国产剧情在线二区| 中文字幕在线看片69www| 强壮的公弄得高潮HD| 亚洲国产乱伦视频| 歐美亞洲國產激情一區二區| 久久tv免费国产精品美女 | 久久99国产综合精品免费麻花| 日韩亚洲一中文字幕| 男女做高清无遮挡免费视频 | 国产成人精品黄片| 亚洲第一福利网站| 高清视频在线观看免费| ap片免费观看在线视频| 老司机天天操夜夜操| 无码a片视频免费播放| 少奴人妻久久中文字幕| 男女爽爽无遮挡午夜视频在线观看| 亚洲日韩一区2区无码AV| 亚洲18免费在线视频| 亚洲另类日韩在线| 91久久久久久无码精品国产| 精品国产自在在线在线观看| 日韩成人AV一区在线观看| 国语自产视频在线社区| 午夜两性视频| 做爰全过程免费无码的视频| 美女网站免费福利视频| 波多野结衣 无码av在线播放| 国产三级漂亮护士和医生上班| 免费啪视频观在线视频在线| 欧美日产国产一区| 中国女人内谢69xxxx视频软件短片 | 欧美成一级片欧美成一级片| 亚洲国产精品无一区二区三区| 富二代抖音app黄版下载| 国产一区二区在线观看播放| 亚洲日本电影久久| 午夜爱爱爱爱爽爽网站免费 | 国产在线精品麻豆| 亚洲午夜精品无码专区在线观| 欧美激情桃花一级免费毛片| a成人毛片在线播放午夜视频| 亚洲国产成人无码AV在线| 精品午夜老司机在线观看| 思思色免费视频| dy888午夜福利视频| 亚洲欧美另类久久久精品播放的| 亚洲一区二区三区无码少年| 精品日国产av自拍| 久久v片午夜福利專業從事互動視頻 | 日韩中文字幕乱码播放| 成年免费a级毛片∴| 老熟女强人国产在线视频| 日韩高清在线中文字幕一| 制服丝袜国产一区在线播放| 99视频免费高清完整版| 色777在线观看女人视频| 久久久久久久久无码精品亚洲日韩 | 国产欧美日韩另类在线| 国产性色亚洲AV性爱| 亚洲?V无码乱码在线观看裸奔| 欧美久久久久久性生活| 操日本美女裸体大白屁股大粉逼| 久久久久久久国产精品影院 | 女生越喊疼男生越有劲儿视频一个人看| 高清成年美女网免费视频| 色AV色婷婷96人妻久久久| 亚洲成aⅴ人片在线观| 欧美性爱一嫩草影院| 免费黄日本韩国黄色片| 第一次进小婷身体又紧 | 中文字幕在线一区二区三亚| 国产黑色高跟鞋丝袜美女视频| 国产在沙发上午睡被强| 1024手机看片人妻无码旧版| 叫出来~别忍着~爽么| 國產精品每日在線觀看男人的天堂| 久久99精品久久久久久9蜜桃| 黄色三级视频| 伊人999精品视频| 日韩在线试看一区96丝袜| 久久久久看夜夜爽无码不卡| 在线观看国产在线优质精品| 国产在线精品一区二区不卡 | 国产亚洲草草影院| 欧美女人一区二区| 三级在线wwwfreemoviea久久瑟瑟| 激情综合亚洲国产| 日韩司机AV毛片| 国产精品一区二区传媒蜜臀| 强奷乱码中文字幕在线视频| 欧美激情在线观看手机视频| 国产在线 欧美日韩| 女人弄爽到高潮免费视频网站| 日≈韩一欧美p片内射久久| 东北女人高潮国产av| 查看亚州最大黄色成人小视频| 免费A级毛片18禁网站APP| 亚洲福利精品区一区二区三区 | 国产白丝精品爽爽久久蜜臀| 亚洲伊人色综合网站亚洲伊人| 免費在線觀看东方aⅴ无码不卡| 中文亚洲爆乳无码专区转码| 2021年最新无码福利视频| 性爱视频一区二区三区| 国产精品毛片av一区二区不卡| 无码熟妇人妻肥屁av在线互动交流| 粗壮公每次进入让我次次高潮| 黄色毛片免费观看视频| 极品粉嫩视频午夜在线观看| 色情乱婬A片无码天堂影院男组长| 蜜桃日本免费看mv免费版| 无码国内精品麻豆久久人妻| 无码春药按摩中文字幕| 免费看大黄高清网站视频在线| 国产户外露出视频在线观看 | 午夜无码网站| 无码一区二区三区免费看视频| 欧美精品在线一区二区在线观看视频| 在线观看AV第一页| 欧美精品久久久久久大尺度| 玖玖精品中文字幕| 亚洲无码一区二区三区动漫| 歐美亞洲國產激情一區二區| 国产一区二区三区视频在线播放| 国产精品女上位在线观看| 亚洲视频一区二区日本三级欧美三级 | 国产盗摄一区二区三区厕所视频| 么公又大又硬又粗又爽视频电影| 國產亞洲產精品久久久| 国产色情理论在线观看视频| 99无码人妻一区二区三区| 欧产日产国产精品毛片| 欧美日韩午夜视频在线| 无码人妻精品中文字幕蜜臀 | 2019最新中文字幕| 亚洲国产乱伦视频| 真人aa一级真人片视频| 亚洲老熟妇老熟女1| 公车掀开奶罩边躁狠狠躁学生电影| 欧美三级又大又粗又长| 欧美性色欧美a在线图片| 国产 成人 高清| 国产真人无码作爱免费视频久| 亚洲七七久久综合影| 亚洲国产成人爱av在线播放| A级特黄大片24在线| 一个人看的免费视频WWW中文字幕| 亚洲最大成人综合网720p| 国产精品久久久久77777按摩 | 大香蕉伊国产在线播放652| 天堂中文在线最新版免费观看| 轻点灬大JI巴太粗太长了A片 | 国产精品人人做人人| 天天看高清无码视频网| 无码熟熟妇丰满爆乳啪啪| 国产真实交换配乱婬95视频 | 精品久久久久久久久久久久| 精品一卡二卡三卡四卡免费| 91成人Tv免费观看| 一区二区吉泽明步中文字幕| 少妇中文免费日本| 精品日韩国产欧美在线观看| 免费无码国产∨片在线观看| 久久久久久精品免费| 国产成年免费看片| 尤物最新网址| 一區二區免費在線觀看| 欧美毛多水多肥妇老妇人| 乳摇福利小视频在线无码| 亚洲天堂最新地址在线观看| 日本h片无遮挡在线观看| 久久久久久久国产精品影院| 天天在线中文无码视每天大量更新| 欧美freesx黑人又粗又大| 国产 成人 高清| 国产AⅤ无码专区亚洲AV琪琪| 在线免费看成人性情| freexxoo欧美3d动漫在线| 亚洲老妇久久 | 黄污片app成人深夜| 岛国无码aⅴ在线播放一区| 西西人体444高清大但| 免费稀缺拗女一区二区| 怡红院怡春院欧美2021| 久久国产精品无码超碰| 免费手机黄色网址| 亚洲视频 中文字幕 欧美在线| 精品国产综合区久久久久99 | 99视频免费这里只有精品| 樱桃视频污在线观看| 国自产拍偷拍精品啪| 美腿少妇资源在线网站| 91香蕉国产观看免费人人| 欧美日韩午夜视频在线| 日韩高清atv无码| 一级真人片秋霞特色大片| 国产山东48老熟女嗷嗷叫白浆| 欧美日韩精品影院第1页| √天堂资源中文最新版地址在线| 久久精品这里| 密臀AV一区东京热| 亚洲AⅤ无码国产| 免費在線觀看东方aⅴ无码不卡| 天天综合国产中文日韩直播综合| 久久精品成人无码Aⅴ片观看| 久久精品国产在线观看| 欧美日韩精品影院第1页| 久久久久国产高清视频| 天天综合国产中文日韩直播综合| 精品国产区二区三区| 欧美视频在线播放一区二区| 天堂成人av在线| 免费一级欧洲在线观看| 女人18A级毛片综合久久| 国产频99热精品在线| 国产亚洲精品久久久极品| 欧美日产国产一区| 日韩欧美双插在线观看| 亚洲欧美日韩日产极品| 亚洲性爱免费视频网| 日韩欧美国产高清在线三区 | 寂寞的少妇无码| 亚洲av永久无码区成人网站| 一区二区三区电影乱码在线观看| 中文字幕日本视频高清一区| 亚洲欧美一区中文字幕蜜臀| 可乐视频无码中文字幕| 亚洲av电影天堂网在线观看| 香蕉久久精品国产亚洲| 日本极品一区二区精子久久| 久久综合国产精品视频成人无码 | 国产探花无码视频在线观看| 亞洲精品綜合一區二區三區在線| 大战丰满无码人妻50p| 欧美性猛交免费看蜜桃| 免费手机黄色网址| 高清影院在线欧美人色| 91短视频黄版下载| 亚洲日韩国产一区二区性色| 亚洲午夜成人无码福利| 亚洲精品在线永久免费| 韩国免费a级作爱片在线观看| 野花影视大全| 不卡在线天然素人无码互添| 国产欧美精品一区二区久久久| 亚洲制服另类无码专区| 亚洲国产精品三级中文字幕在线观看| 男人的天堂丝袜视频| 亚洲av无码成人精品网站伊人| 老司机一区二区免费视频| 特级毛片a级毛片免费播放100| 亚洲欧洲日产最新aaav毛P一区| 亚洲青草中文| 91精品國產福利在線觀看麻豆| 亚洲美女av免黄| 婷婷丁香久久| 国产精品成人无码a片免费看| 日日摸夜夜添无码无码a∨| 高顏值露臉極品在線播放| 久久这里只是精品最新| 一级aa免费鲁丝片| 欧美极品福利网在线观看| 国产精品黄国产在线综合网| 亚洲可干人妻中文字暮| 日韩中文字幕乱码播放| 青青草原国产资源在线| 国产性色亚洲AV性爱| 波多野结衣av一二三区| 中文字幕人妻美腿丝袜乱一区三区| 国色天香精品一卡2卡3卡四卡| 国产2020亚洲欧美在线视频最新 | 91在线国产视频观看| 人妻无码不卡中文视频| 亚洲视频在线观看量A| 日本韩国一区中文字幕在线| 潮吹女同志黄色网免费在线观看| 超级碰人人超碰超国产| 中文字幕无码日韩aⅴ| 亚洲欧美曰韩国产字幕| 一区二区熟女日韩| A 'V片欧美日韩在线| 亚洲午夜精品无码专区在线观 | 亚洲Av无卡无码高潮影视| 成人亚洲狠狠色一区二区三区| 麻豆国产av巨作国产剧情| 91成人久久精品| 免费国产高清在线观看最新| 精品久久久无码专区中文字幕国语| av网站在线观看国产免费| 精品视频在线观看免费中文字幕| 99视频这里只有精品6| 男人吃奶摸下挵进去好爽在线观看 | 欧美成人精品一级A图片| 日本精品久久久久| 精品久久久亚洲精品| 欧美日韩亚洲变态口味重另类| 情欲一区二区三区在线视频| 国内精品无码久久| 欧美日韩精品粗暴视频播放| 又摸又揉又黄又爽的视频| 亚洲国产精品中文字幕一区| 最刺激的欧美三级网站| 一色桃子中文字幕人妻熟女作品| 亚洲无码电影等最新內容| 野花影视大全| 国产精品久国产精品| 久久综合无码?v东京热| 日本丰满熟妇又毛| 日韩理论在线电影| freexxoo欧美3d动漫在线| 亚洲成人毛片一区二区三区| 成人免费视频亚洲精品| 老中醫吮她的花蒂和奶水視頻播放 | 在线电影日本激情视频在线观看免费| 亚洲av永久无码区成人网站| 亚洲国产熟女一区| 国产一区在线观看免费视频| 国产高清美女毛片久久| 欧美成人吃奶高清视频| 免费久久无码专区高潮喷水| 香蕉久久久久久AV网站| 亚洲日本熟女99热| 亚洲精品多人p群| 欧美日韩综合久久| 日韩亚洲国产成人àv| fu2d在线亚洲国产| 国产呻吟手机在线观看| 一二三四高清免费色网视频| 手机看免费看片| 亚洲成人激情综合| 五月天中文字幕综合网| 欧美黄片lv在线播放| 色婷婷亚洲精品天天综合影院| 一级做a爰片久久毛片A片91?| 波多野结衣av一二三区| 日本黄网站日韩一级色网视频| 少妇人妻给我内射视频| 2021国自产拍国偷自产| 91午夜精品免费视频| 日韩精品99视频| 少妇性l交大片免费看| 国产美女脱光无遮挡| 日本巨大超乳在线一本| 女高中生自慰免费观看WWW| 久久成人+一区+二区| 查看亚州最大黄色成人小视频| 美女扒开腿让男生桶免费看动态图 | 天堂俺去俺来也官网| 草莓视频app在线观看完| 久久中文字幕国产熟女| 白嫩美女一级毛片免费看| 大家可以在这里午夜视频福利| 国产成人羞羞视频网站在线观看| 国产大学生AV片在线观看| 无码综合中文影视| 久久久久av综合网成人| 色欲国产一区二区| 国产乱人无码伦aⅴ在线a| 久久精品日韩AV无码| 国产一本到在线视频观看| 99久久这里只有精品23| 亚洲国产女人啪啪| 俄罗斯女女破苞视频| 黑帮大佬和我的365日第2季| 香蕉97超级碰碰碰碰碰久| 99久久精品无码一区二区麻豆| 538prom国产在线视频一区| ?超超碰中文字幕伊人| 菠萝菠萝蜜在线视频| 国产在线超清日本一本| 国产伦一区二区三区免费观看| 国产三级之丰满杨贵妃| 精品美女久久久久久免费| 少妇性l交大片免费| 亚洲日韩精品第一页一区| 蜜桃AV无码理论片在线观看| A级视频免费网址在线观看| 亚洲国产欧美一区二区好看电影| 亚洲最快天堂无码专区| 在线观看无码少妇高清| 久久久一区黄网无码| 久久精品青青大伊人av| 91麻精品国产91久久久久等最新内容!| 91短视频黄版下载| 超碰97人人操人人| 亚洲七七久久综合影| 欧美三级片在线观看不卡4k岛国| 国产91精品久久久久??51www在线观看 | 中文字幕av无码一区二区蜜芽三区| 亚洲AⅤ片综合久久网| 国产亚洲精品aa片在线观看动图| 亚洲成在人网站天堂一区二区| 国产精品丰满老女人精品视频我们| 亚洲真实娇小XXXX欧美| 亚洲精品无码?V天堂久久| 免看一级a一片视频| 亚洲欧美日韩黄片| 日本成本人片免费久久| 亚洲国产精品不卡高清在线观看| 欧美性爱一嫩草影院| 国产精品久国产精品| 日韩一级片黄片纯片免费观看| 黑人入室强丰满人妻| 久久精品一区二区日韩| 亚洲制服动漫偷拍丝袜美腿| 久久综合一区二区精品99| 成人一区二区三区国产| 人妻激情中文字幕| 管鲍之交分拣中心未满十八岁| 国产盗摄一区二区三区厕所视频| 亚洲色一色鲁一鲁鲁| y91国自产精品一区二区三区| 免费无码成人αV片在线在线播放| 无码在线观看中文免费| 差差差app软件下载大全免费 | 欧美性猛交免费看蜜桃| 啊轻点灬太粗嗯太深了蜜桃av| 日韩欧美午夜视频| 亚洲v无码专区国产乱码一区二区 夜夜嗨色综合AV麻豆精品 | 午夜福利久久久久久| 午夜无码网站| 免费三级黄色| 欧洲av无码乱码国产精品麻豆| 亚洲av无码精美色午夜| 久久精品这里| 亚洲国产中文精品视频| 欧亚精品卡一卡二卡三| 少妇做爰XXXⅩ性视| 欧美黄色电影免费观看| 国产极品白嫩精品无码视频| 无码人妻丰满熟妇啪啪| 欧美国产激情二区三区| 午夜福利久久一区| av手机天堂在线版| 成人3D同人动漫网站在线| 國產歐美日產一區二區三區人妖| 中文字幕av蜜臀av色欲av| 91精品无码少妇高潮喷水白浆| 成人无码特黄特黄av片在线| 日韩综合一区二区在线观看| 香蕉97超级碰碰碰碰碰久| 一级无码最新2022| 日韩 无码 精品 国产| 99热这里全都是精品国产| 91插插影库永久免费| 国产推油久久99久久99| 超碰中文字幕人妻导航| 人人免费人人看| 无码a片视频免费播放| 真人一级特黄毛大片| 狠狠鲁的网站| 国产ts紫迹在线观看| 国产成人羞羞视频网站在线观看 | 尤物最新网址| 永久黄网站色视频免费视频| 欧美亚洲一区电影| 中文字幕av在线电影| 驯服已婚人妻hd中文字幕| 亚洲欧洲无码精品秘| 欧美视频在线播放一区二区| 国产口暴吞精一区二区| 又色又爽又黄的视频小火星| 亚洲午夜精品无码专区在线观| 香蕉视频www观看无限制版| 国产精品久久久久久av下载| 我们免费观看亚洲无码视频| 7788色淫网站免费| 日本不卡一二视频| 男女18禁一区二区三区口H毛片| av无码中文不卡在线观看| 精品一线天无码视频在线| 美女在线观看精品在线观看| 日韩欧美亚洲妖精| 午夜精品区一区二区三| 欧美高清成人| 国产乱码视频一区二区三区| 黄片免费黄片在线一级观看| 99視頻在線免費| app黄色软件合集| 国产富婆高潮| 日韩成人精品毛卡片视频| 黄色录像成人播放免费| 亚洲天堂av不卡| 亚洲国产中文无线码在线| 大香伊蕉在人线国产2020年| 亚洲va在线天线va天堂va国产| 三级免费亚洲欧美| 亚洲天堂AV在线WWW| 麻酥酥91自慰白浆| 亞洲AV無碼成人專區片在線觀看| 国产成人亚洲精品91专区手机| 免费手机黄色网址| 99综合视频在线免费观看| 国产在线成人观看.www| 最新97国产自在线拍视频| 国模精品视频一区二页| 永以黄网站色视免费观看| 免费观看在线的a视频在线| 亚洲精品91大神在线观看| 国产性感美女一区二区| 亚洲AV永久无码精品男同| 精品免费永久免费视频| 亚洲色婷婷综合久久一区二区三区 | 综合人人五月天视频| 国产区精品亚洲| 激情97综合亚洲色婷婷五月| 中文字幕日韩综合网| 精品蜜桃久久久久久久91| 亚洲日韩中文字幕欧美| 亚洲日韩精品国产无码专区| 久久99国产综合精品免费麻花| 码粉嫩小泬无套在线观看| 日韩欧美中文亚洲字幕| 四区无码免费清纯视频| 国产欧美精品一区二区久久久| 国产av片在线看亚洲精品| 国产无码精品在线观看每天| 欧美日韩高清交| 久久中文无码精品电影| 五月天综合网缴情五月中文| 一级女性全黄生活片看看| 少妇高潮大片免费观看| 无码在线观看中文免费| 欧美色网视频在线观看| 久久婷婷五夜综合色啪| 久久高清超碰AV| 无码人妻熟妇av又粗又粗| 亚洲欧美日韩综合网在线| 国产精品丰满老女人精品视频我们 | 免费黄日本韩国黄色片| 丰满岳跪趴高撅肥臀尤物在线观看| 国产不卡一区不卡二区精品| 欧美日韩小说一区二区三区| 免费日韩网站| 麻豆国产福利91在线| 亚洲有码在线观看| BBWHD老太大欧美| 欧美国产日韩中文字幕综合在线| 一区二区美腿丝袜控| 日本精品久久久久| 国产免费a∨在线播放| 国产性色亚洲AV性爱| 深夜福利在线观看国产| 欧美精品高清一区| 亚洲国产色图| 免费无码高清视频| 国产精品三级影片| 亚洲va中文字幕不卡无码下载| 国产又粗又硬又爽又黄的视频 | 欧美成人理论片免费观看| 日韓在線精品視頻| 亚洲无码有码强奸| 国产免费黄色电影| 成人国产一区二区精品 | 乱色美www女麻豆| 波多野结衣a∨全集无码种子| 自拍欧美在线综合另类| 亚洲欧美另类久久久精品播放的| 亞洲國產精品一區久久AV| 超碰97在线线播放| 97国产精品午夜福利| 日本欧美不卡胖女人| 91夫妻内射一区二区| 丁香婷婷激情六月中文一区| 精品日国产av自拍| 永久在线亚洲观看| 成人黄色毛片免费在线观看| 久久综合色老色| 久久精品国产亚洲?Ⅴ无码| 日韩一区国产二区不卡| 在线看片国产的免费的| 在线无码自拍流白浆| 久久久久国产精品二国产| 韩国国产福利视频一区| 亚洲一区二区三区在线免费看| 亚洲精品精品一线久久| 欧美毛多水多肥妇老妇人| 久久精品国产亚洲A∨久| 精品高清欧美日本| 日韩在线一区二区三区视频| 非洲黑美女18一级A片| 福利视频专区一区| 美女任你摸在线视频网站| 亚洲色图亚洲无码在线| 亚洲日韩欧美国产V| 日韩欧美精品大全| 成人视频免费在线观看| 国产精品白浆无码流出视频| 国产亚洲精品aa片在线观看动图 | 免费黄日本韩国黄色片| 最新老熟女AV导航| 黄色一级久久毛片| 精品中文字幕制服一区| 欧美一二三区中文字幕| 亚洲欧美另类永久性闷网站| 国语对白 一区二区三区| A级一级毛片免费| 日本最新一区二区三区电影| 色情乱婬A片无码天堂影院男组长 干我啊啊啊视频黄色国产在线观看 | 欧美黑人狂躁少妇无码中文字幕| 色又黄又爽禁免费网站在线观看| 欧美视频在线播放一区二区| 国产hs视频在线观看| 国产一区二区三区视频在线播放| 韩AV片无码一区二区不卡电影| 久久夜色国产精品禁果91| 亚洲AV无码一区二区三区播放 | 玖玖资源站无码专区| 国产美女精品视频第一页| 国产三级之丰满杨贵妃| 欧美亚洲国产直啪在线观看| 美女A∨福利片在线观看| 亚洲精品区免费观看av| 在线不卡av电影在线观看| 色色色色色综合视频国产| 亚洲最大成人综合网720p| 精品国产最大的调教网站| 精品亚洲情欲一区二区三区| 性感美女在免费看黄片| 国产亚洲精品aaa在先线播放| 国产A级黄色激情小视频| 91午夜理伦私人影院| 男人亚洲成色av网站| 一个人看的免费视频WWW中文字幕| 国产无码在线观看免费视频| 91亚洲精品国产中文| 午夜电影在线观看无码专区| 久久精品免费看国产电影| 无遮挡男女啪啪成人免费软件| 国产美女精品黄片| 国产一区二区不卡更新| 91成人Tv免费观看| 野花香视频高清免费观看| 干女人逼很爽的视频| 大伊人无码综合天堂Aⅴ| 黄色视频在线观看免费网址| 天堂VA在线观看视频| 日韩无码啪啪啪视频| 久久无码中文字幕人妻| 粉嫩小泬久久久一区二区| 日本免费一区二区三区在线看| 久夜人成网站免费看| 国产最新亚洲综合| 97国产精品午夜福利| 欧美高清一区二区三区欧美在线视频| 午夜两性无码小视频| 黄色污污在线观看| 51无人区码一码二码三码| 亚洲日韩精品第一页一区| 日韩精品一区二区在线观看| 人人做人人澡人人爽一区二区三区| 影视先锋看片网站| 国产一区二区精品久久蜜柚| 中文字幕AV毛片在线观看| 大胆激情一区三级社区素人| 中国女人内谢69xxxx视频软件短片 | 国产亚洲视频精品播放器 | 亞洲歐美綜合區自拍另類| 黄色一级久久毛片| 欧美日韩国产综合一区WWV| 欧美性愤潮xxxx| 国产亚洲一品二品AV在线播放| 揉捏奶头高潮呻吟视频| 欧美日韩v中文在线| 无码在线视频亚洲色图| 久久久久国产精品二国产| 亚洲精品www在线网站| 手机看片国产在线播放| 丰满人妻无码aⅴ一区二区一| 女人扒开屁股让男人桶30分钟| 毛片免费毛片一级jjj毛片| 日韩精品一区在线观看网站| 国产黄色在线看| 亚洲国产精品欧美激情在线观看 | 国产欧美中文字幕| 国产成人精品亚洲日本| 国产2020亚洲欧美在线视频最新 | 国产亚洲欧美精品电影| 4080yy理论菠萝蜜小视频| 日朝国产亚洲精品| 国产真实露脸精彩对白91| 国产A级黄色激情小视频| 久久香蕉国产线看观看网 | 亚洲H成年动漫在线观看不卡 | 日韩中文字幕在线观看国产| 偷拍视频精品一区二区三区| 在线观看腿交射精无码av| 成人无码大片免费播放在线观看| 国产三级黄色免费看| 欧美国产在线播放日韩| 日韩欧美高清老熟女免费观看| 国产精品亚洲aa综合aa国产| 新搬来的女邻居不戴乳罩| 在线观看视频国产区se| 国产理论片黄色一级录像片| 精品欧洲成Av人在线观看| 成长影院在线播放视频| 手机在线看片 你懂的二级片在线看| 国产美女精品三级在线观看| 野花香视频高清免费观看| 女人髙潮特级AAAA级| 亚洲区小说区激情区| 51视频精品全部免费永久| 俄罗斯一级毛片真人免费视频| 婷婷五月人人| 久久水蜜桃精品一二区| 日韩一区二区三| 又爽又黄又屋遮挡的视频| 亚洲第一成人18禁网址| 国产熟女真实乱精品| 欧美色图亚洲涩图| 国产99在线播放免费| ΑV天堂在线观看免费ΑⅤ| 久久9精品区无套内射无码| 国产精品亚洲aa综合aa国产| 在线看片国产的免费的| 亚洲成在成人在线观看| 久久99九九精品久久久久齐齐| 成 人 色综合 综合网站| 愛妃精選国产成人精品久久综合 | 激情综合网激情亚洲| 日韩激情视频网站欧美专区在线观看| 国产中文字幕永久免费观看| 国产真实二区一区在线亚洲| 99久久国产综合精品1上映| 国产一区午夜激情| 久久一卡二卡亚洲精品| 亚洲欧美日韩中文子慕| 91香蕉在线观看| 午夜男女拍拍流水| 日韩狂欧美高清狂热视频| 欧美日本一道本一区二区| 男人使劲躁女人过程视频| 成人國產精品久久久免費| 男人又大又粗J8图片| 久久久久久亚洲AV无码专码| 永久在线亚洲观看| 亚欧洲免费在线观看视频| 国产福利萌白酱精品一区二区| 波多野结衣在线一区播放| 日韩欧美成人字幕在线观看| 国产精品天干天干在线观| 日韩精品毛片人妻AV不卡| 午夜福利久久久久久| 久久久久亚洲国产精品视频不卡AA免费看 | 国产视频一区二区三区观看| 国产sm强制高潮窒息失禁文字| 差差差app软件下载大全免费 | 国产普通话对白刺激| 免费的黄色小视频 | 亚洲av无码成人福利在线 | a级日本高清免费看| 欧美日韩亚洲一级理论| 久亚洲gv成人无码国产| 侵犯人妻女教师中文字幕| 国产一二三四在线视频| 少妇人妻一区二区三区区别视频| 快活影院在线观看| 麻豆一区精品在线| 亚洲色一色鲁一鲁鲁| 精品久久久看视频 | 91欧美亚洲国产中文五月天| 国产一区二区亚瑟影院| 日韩亚洲一中文字幕| 在线日本妇人成熟免费a√午| 2021年最新无码福利视频| 国产h片在线观看免费| 日韩AV无码高清| 做暖暖爱视频免费视频网站| 欧美一区二区不卡视频| 午夜男女拍拍流水| 好湿好紧水多aaaaa片秀人网| 色狠狠久久av五月综合五月av| 男女羞羞视频免费在线观看网站| 国产日产欧产美韩系列使用方法 | 日韩成本人Av免费观看| 手机免费看片在线| 国产一区二区 国产精品| 亚洲伊人成综合影院| 91香蕉国产线在线观看免费永久| 国产三级在线超清无码| 久久综合国产精品视频成人无码 | 影视先锋看片网站| 日韩综合一级播放网站| 一区二区三区四区精品日韩在线 | 亚洲日韩AV在线波多野结衣| 日韩在线观看中文字幕一区二区 | 波多野结衣中文字幕一区二区三区| 欧美老片特级在线手机观看| 欠欠国产精品亚洲va麻1| 久久精品这里| 欧美重囗味sm群虐视频| 欧美激情一区二区三区四区在线 | 日韩司机AV毛片| 亚洲区小说区激情区| 69堂无码国产精品色四婷婷专区| av动漫一区二区动漫精品主线| 中国毛片黄片免费视频| 亚洲ⅴa曰本va欧美va视频| 亚洲乱码中文字幕综合| 精品国免费一区二区三区夜夜嗨| 麻豆国产96在线日韩| 在线不卡av电影在线观看| 国产三级精品久久久久国产亚洲| 最近日韩免费成人在线观看视频| 91在线超碰国产精品| 性关系秘?视频免费| 玖玖资源站无码专区| 韩国美女真人性做爰| 中日韩亚洲欧洲av| 国自产拍偷拍精品啪| 精品少妇av无码免费久久| 欧美日韩亚洲字幕二区| 免费国产乱理论在线2019| 清纯校花受辱沦陷记h陈若雪| 无码人妻精品中文字幕蜜臀 | 五月天中文字幕综合网| 亚洲精品午夜久久蜜臀av| 亚洲国产成人久久不卡| 亚洲乱码一二三四区麻豆| 男攻打男受光屁股sp调教| 亚洲成a v人片在线观看| 小蝌蚪app无限观看污免费| 色综合天天综合高清| 可乐视频无码中文字幕| аⅴbt天堂中文在线| 精品久久久看视频| 精品久久久片| 中文字幕精品三| 激情综合网激情亚洲| 欧美丰满老熟妇BBBBB| 亚洲精品区免费观看av| 国产亚洲曰朝精品视频自拍| 无码毛片高潮一级一级喷水黑人| 日本一区二区不卡深夜| 日韩黄色精品网站| 国产午夜无码喷水福利在线看 | 亚洲人成网站18禁止αⅴ| 成人午夜激情视频| 中文字幕av有码福利网| 1024cc香蕉在线观看视频免费| 一级字幕中文欧美日本黄页| 7m最新精品视频在线观看| 亚洲高清日本系列| 欧美乱伦国产综合| 久久9精品区无套内射无码| 日韩精品区一区二免费在线网 | 一区二区三区高清视频一| 免费国产va在线视频| 亚洲乱码中文字幕综合 | 亚洲制服丝袜欧美xfplay在线| 婷婷五月天AV免费在线| 國產精品每日在線觀看男人的天堂| 中国少妇人妻xxxxx| 亚洲av午夜精品三区| 成人午夜在线看片| 野花香视频高清免费观看| 亚洲七七久久综合影| 色哟哟网站在线观看| 99久久精品毛片观看| 精品熟女少妇av免费久久| 亚洲AV永久无码精品欣赏不卡 | 国产精品老熟女50p| 国产内射999视频一区| 国产古装全黄A级视频一本久久精品一区二区 | 人妻激情中文字幕| 超碰97免费日女人| 高潮潮喷精品在线| 拨开岳两片肥嫩的肉御心香帅| 色播久久人人爽人人爽人人片AV| 亚洲成年人在线观看| 无码在线观看高清国产| 自己在家自慰无码在线观看| 可以在线观看的黄色网站| 国产综合精品一区二区| 国产真实二区一区在线亚洲| 免费观看在线的a视频在线| 6080新觉伦午夜中文字幕| 亚洲中文无码av永久| 國產精華最好的產品人V| 1024成人网站色| 国产熟女真实乱精品| 一级无码最新2022| 午夜激情在线一区在线视频精品无码| 琪琪午夜理论片视频| 亚洲综合偷拍欧美一区日韩| 国产最熱門最齊全的電影| 国产 成人 高清| 77777少妇AAAAA片毛片| 日韩美女精品毛片| 中文字幕av一区乱码深夜动态福利| 曰批免费视频观40分钟| 国外巨g乳熟妇av无码| 美女超黄视频国产| 91精品久久国产青草| 奇米第四色在线视频| 欧美亚洲在线不卡的?v| 亚洲无码国产精品久久不卡| 久草av免费福利资源| 亚洲国产精品免费线观看| 国产一国产一级秋霞片| 日韩视频高清一区二区三区| 亚洲国产女人啪啪| 激情文学无码中文字幕| 国产video欧美亚洲性爱 | 多人野外伦姧在线观看| 国产一区二区噜噜噜| 欧美午夜精品精品一区| 日韩一二三区人妻| 少妇裸体正面牲交| 色综合久久88一加勒比| 欧美看电影来5566久久香蕉| 亚洲欧美日韩精品久久真绪| 亚洲最大尺度无码HD在线观看| 91久久久久无码国产精品一区99| 一级AAAAA毛片免费视频| 2021亚洲国产成a在线| 伊人网在线视频| 白丝校花扒腿自慰网站| 99视频这里只有精品6| 妇女bbbb插插插视频中文字幕| 岛国午夜福利一区二区| 亚洲色图亚洲无码在线| 亚洲精品乱码久久久久久| 青青草88久久久中文字幕| 韩国三级高清中文字幕| 国产人妖cd在线看网站| 欧美V日韩V亚洲| 精品人妻少妇av一区| 欧美交换配乱婬粗大最火爆亚洲| 超碰在线欧美性爱97| 在线观看人成视频免费观看| 国产精品99久久久久久| 999精品视频在线观看热6| 俄罗斯一级毛片真人免费视频| 男女啪啪视频免费看国产的| 日≈韩一欧美p片内射久久| 又污又黄无遮掩的网站| 天堂VA在线观看视频| 日本一本在线| 无敌影院午夜在线观看| 激情综合色综合啪啪开心| 亚洲v无码专区国产乱码一区二区| 欧美日韩黄色小视频| 欧美猛男军警gay自慰| 18禁裸男晨勃露j毛在线看| 无码A片夜色A片久久成人| 亞洲中文字幕av無碼區| 好黄好硬好爽视频| 欧美另类爆乳乳妇| 欧洲a老妇女黄大片| 高清无码视频在线观看| 2021无码精品视频| 精品国产乱码久久久久久红粉 | 亚洲一区二区三区在线不卡 | 国产精品女A片爽爽免费按摩| 老熟美妇一区二区| 91香蕉在线观看| 国产精品一品二区| 欧美日韩精品免费一区二区| 伊人久久精品无码一区69| 人妻中文无码久热丝袜| 国产专区尤物极品在线| 国产欧美日韩另类在线| 无码字幕av一区二区三区| 在线亚洲丁香五月天六月| 天堂中文8资源在线8国内精品视频在线| 亚洲制服动漫偷拍丝袜美腿| 女人国产香蕉久久精品亚洲vr| 免费无码国产在线观看应用| 久久er视频精品在线99| 午夜剧场成人免费久久精品| 国产欧美日韩中字亚洲| 亚州综合第一页黄网免费在线观看| 久久人人爽人人爽人人爽| 久久爱成熟女人粗暴毛片| 内射人妻无码色A v麻豆去百度搜| 日韩在线一区二区三区视频| 亚洲国产韩国久久| 免费+无码+国产在线91| 日韩欧洲亚洲精品| 夜添久久精品亚洲精品第一国产综合高清 | 久久国产色a∨免费看| 日韩高清在线中文字幕一| 国产av片在线看亚洲精品| 中国毛片黄片免费视频| 国产色av一区二区在线| 100款流氓软件APP下载| 国产精品久久久久久av下载| 海角社区在线第五页| 国产女王免费区视频| 国产初高中小泬视频| 丁香五月在线播放色网站| 在线看片国产的免费的| 免费观看性欧美一级| 中美日韩三级毛片免费观看| 国产经典a区久久久一区二区三区| 精品日韩在线视频一区二区| 国产亚洲午夜精品a一区二区三区| 歐美日本亞洲國產一區二區| 亚洲一级a看片资源网| 久久成人免费毛片高清观看 | 日韩国产手机在线| 亚洲中文字幕无码一区精品| 亚洲av青草久久福利| 国产内部无码AV推油区| 亚州中文一二三四精品久久| 无码春药按摩中文字幕| 亚洲日韩欧美国产V| 久久精品国产72国产精#| 97久久精品色老| 久久网黄色毛片| 91新视频一区二区三区| 欧美日产国产一区| 国产精品无码一二三四区| 国产欧美日韩精品一区免费| 日韩精品a免费一区毛片| 午夜男女拍拍流水| 国产一级午夜理论| 国产97av在线播放| 密臀一区中文字幕在线| 99热这里只有精品亚洲欧美国产| 日韩专区一区二区| 免费看v片的网站| 国产重口另类极限扩张视频网站| 人妻丰满熟妇dv无码区App| 亚洲人成网站18禁止αⅴ| 人人妻人人人澡人人爽欧美二区| 大家可以在这里午夜视频福利| 色哟哟在线免费观看| 日韩免费高清播放器乐播AV | 亚洲另类欧美日韩亚洲精品365P | 在线免费亚洲免费亚洲| 欧美日韩午夜视频在线| 正在播放另类视频| 亚洲精品91大神在线观看| 看欧美日韩国产一区二区在线观看| 人妻少妇精品视频无码综合| 亚洲制服丝袜欧美xfplay在线| 88AV在线视频观看| 一级片免a在线免费视频| 高潮潮喷精品在线| 天天性爱视频网站| 探花国产精品福利| 特级毛片www免费视频| 国产一级特黄aa大片爽| 日韩午夜在线播放| 亚洲AV无码成人精品区无码| 黄色视频在线观看免费播放| 精品毛片在线| 亞洲AV無碼成人專區片在線觀看| XXXX内射中国老妇| 男男男全肉高H湿PLAY短篇| 国产精品一级免费AV | 精品一区二区三区高清视频| 国产成人ay手机在线观看| 可以免费看的黄色视频网 | 在线观看人成视频免费观看| 亚洲高清人妻无码aⅴ不卡中文字幕 | 视频 国产 欧美视频| 一区二区三区四区视频在线观看| dy888午夜福利视频| 天天玩天天干天天操| 2024中文字幕国产在线视频| 亚洲欧美日韩国产中文字幕免费看片视频软件 | 免费的三及片国产中文欧美| 午夜福利中文字幕国产精选| 男人天堂视频在线观看| 国产成人精品高质量| 最新国产亚洲中文字幕视频| 热这里只有精品国产| 亞洲國產精品一區久久AV| 日日狠狠久久8888偷偷色| 女理发店一级毛片| 一二三四在线播放免费观看中文版视频| 毛片高清在线观看| 91短视频黄色下载| A级视频免费网址在线观看| 久久99国产精品二区高清| 国产成人精品日本亚洲我网站| ?国产高潮对白刺激视频| 欧美视频黑鬼大战白妞| 人妻系列aⅤ无码久久免费| 老男人久久青草AV高清| 精品久久人人爽天天玩人人妻| 欧洲成www免费网站| 韩国一级无码片在线观看| 黄色视频在线观看免费播放| 性感美女在免费看黄片| 97无码免费人妻视频| 国产精品视频一区国模私拍1| 麻豆AV全片免费观看| 国产精品丰满老女人精品视频我们| 国产一级特黄aa大片爽| 色伊伊网在线观看免费网站| 精品久久久看视频| 久夜人成网站免费看| 日韩综合国产在线| 国产女人爽到高潮久久久4444| 日韩在线电影亚洲专区| 中文字幕51精品乱码在线| 十九岁电影韩国免费完整版| 2020自拍视频在线观看| 狠狠色噜噜狠狠狠狠色综合久久| 午夜无码AV密臀少妇影视| 日韩一进一出免费试频| 香蕉久久精品国产亚洲| 国产粗话肉麻对白在线播放在线高清| 中文字幕av蜜臀av色欲av| 麻豆国产AⅤ超爽剧情系列| 国产精品毛毛在线播放| 日本在线成人一区二区| 日韩成人AV一区在线观看| 久久久丰满人妻一区二区三区| 国产一级做a爱全过程全视频| 亚洲?v无码乱码国产精品| 在线一区精品午夜精品| 99久久午夜精品一区二区| 亚洲一区日本| 亚洲国产成人高清在线观看| 精品免费永久免费视频| 18一20女一片毛片| 亚洲AV无码国产另类在线| 反差婊吃瓜黑料爆料黑料91福利社区试看一分钟 | 熟妇仑乱视频一区二区| 人人摸日日干天天操| 亚洲一区在线观看av| 激情综合亚洲国产| 久久精品99久久久久久水蜜桃| 精品黄视频在线观看| 国产熟女真实乱精品| 韩国午夜久久夜理论电影| h动漫精品3d动漫3d动漫在线| 宝贝小嫩嫩好紧好爽h| 日韩中文字幕免费在线观看| 一级黄片免费播放| 中日韩亚洲欧洲av| 热久久免费精品只做手机| 免费国产va在线视频| 日本特黄特色A级视频老湿福利| 亚洲日韩在线在线播放视频在线| 精产国品一区二区三区四区| 91香蕉国产观看免费人人| 99ri日韩无码一区| 国产一级黄片免费在线观看| 免费精品视频在线观看麻豆| 特黄aa级毛片免费视频播放| 日韩精品国产欧美一区二区| 密臀一区中文字幕在线| 亚洲国产欧美不卡在线看片| 国产成人精品曰本亚洲77页| 成人无码免费视频| 免费加无码加国产| 国产99精品成人免费又粗又爽| 久久精品国产亚洲AV麻豆软件| 亚洲日韩激情无码一区| 中文字幕在线一区二区三亚| 最大亚洲人成网站| 国产亚洲亚洲精彩视频| 中文字幕av美利坚合众国无码| 奇米第四色在线视频| 亚洲国产第一区二区香蕉日日!| 新婚少妇无套内谢国语播放| 一级在线观看黄色片| 久久国产精品免费一区下载 | 亞洲AV無碼成人專區片在線觀看| 惠民福利狂野欧美性猛交xxxx| 91麻豆精品视频一区二区| 差差差app软件下载大全免费 | 国内一级无码内射| 老司机午夜视频| 中文一区二区三区高清| 欧洲无码专区一区二区| 韩国r级理论片在线观看| 青青草88久久久中文字幕| 日韓福利視頻高清免費看| 一级毛片午夜| 2022无码在线免费| 2022无码在线免费| 影音先锋男人男人资源站| 久久久波多野结衣av一区二区| 国产丰满乱子伦无码专区| 深夜國產成人福利在線觀看女同| 橙子视频app污下载| 亚洲黄色自拍区|